Gate Stack Analysis of Junctionless Multi-Bridge-Channel FETs for Sub-3 nm Chips

IF 1.9 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vakkalakula Bharath Sreenivasulu;N Neelima;D Sudha;Prasad M;Asisa Kumar Panigrahy;Aruru Sai Kumar
{"title":"Gate Stack Analysis of Junctionless Multi-Bridge-Channel FETs for Sub-3 nm Chips","authors":"Vakkalakula Bharath Sreenivasulu;N Neelima;D Sudha;Prasad M;Asisa Kumar Panigrahy;Aruru Sai Kumar","doi":"10.1109/OJNANO.2025.3611532","DOIUrl":null,"url":null,"abstract":"In the proposed work, we have investigated the potential of the nanosheet FET design and temperature analysis at advanced nodes. Our investigation shows that the variation of gate length (<italic>L</i><sub>G</sub>) from 30 nm down to 3 nm, accompanied by using different gate dielectric materials, like silicon dioxide (only SiO<sub>2</sub>(3 nm)) and hafnium dioxide (HfO<sub>2</sub>) i.e., (SiO<sub>2</sub> (2 nm) + HfO<sub>2</sub> (1 nm)). The analysis is done at Linear (Ohmic) region to observe variable resistor for amplifiers or analog applications and saturation region to analyze the voltage controlled current sources (VCCS) applications. To comprehensively evaluate the electrical performance of the devices at the nano regime, quantum models are invoked to get accurate metrics like sub-threshold swing (SS), drain induced barrier lowering (DIBL), ON current (<italic>I</i><sub>ON</sub>), OFF current (<italic>I</i><sub>OFF</sub>), and <italic>I</i><sub>ON</sub><italic>/I</i><sub>OFF</sub> ratio. Interestingly, even at the ultra-scaled dimensions of 5 nm and 3 nm, our devices exhibited remarkable electrical properties, with <italic>I</i><sub>OFF</sub> reaching 10<sup>13</sup> at 5 nm and 10<sup>11</sup> at 3 nm, while <italic>I</i><sub>ON</sub> maintained a level of ∼10<sup>6</sup> at both dimensions when HfO<sub>2</sub> gate stack is employed as the gate dielectric material. Our findings indicate that the integration of high-<italic>k</i> materials becomes imperative for achieving superior device performance, particularly at reduced <italic>L</i><sub>G</sub> values. Moreover, we explored the scaling flexibility of the transistors by investigating additional parameters such as transconductance (g<sub>m</sub>) and transconductance generation factor (TGF). The impact of scaling of nanosheet FET towards temperature is also analyzed. The analysis shows that ultra scaled nanosheet FET is capable of driving amplifiers and VCCS applications with HfO<sub>2</sub> gate stack compared to SiO<sub>2</sub>.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"102-111"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11171618","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11171618/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the proposed work, we have investigated the potential of the nanosheet FET design and temperature analysis at advanced nodes. Our investigation shows that the variation of gate length (LG) from 30 nm down to 3 nm, accompanied by using different gate dielectric materials, like silicon dioxide (only SiO2(3 nm)) and hafnium dioxide (HfO2) i.e., (SiO2 (2 nm) + HfO2 (1 nm)). The analysis is done at Linear (Ohmic) region to observe variable resistor for amplifiers or analog applications and saturation region to analyze the voltage controlled current sources (VCCS) applications. To comprehensively evaluate the electrical performance of the devices at the nano regime, quantum models are invoked to get accurate metrics like sub-threshold swing (SS), drain induced barrier lowering (DIBL), ON current (ION), OFF current (IOFF), and ION/IOFF ratio. Interestingly, even at the ultra-scaled dimensions of 5 nm and 3 nm, our devices exhibited remarkable electrical properties, with IOFF reaching 1013 at 5 nm and 1011 at 3 nm, while ION maintained a level of ∼106 at both dimensions when HfO2 gate stack is employed as the gate dielectric material. Our findings indicate that the integration of high-k materials becomes imperative for achieving superior device performance, particularly at reduced LG values. Moreover, we explored the scaling flexibility of the transistors by investigating additional parameters such as transconductance (gm) and transconductance generation factor (TGF). The impact of scaling of nanosheet FET towards temperature is also analyzed. The analysis shows that ultra scaled nanosheet FET is capable of driving amplifiers and VCCS applications with HfO2 gate stack compared to SiO2.
sub - 3nm芯片无结多桥道场效应管的栅极堆叠分析
在本文中,我们研究了纳米片FET设计和先进节点温度分析的潜力。我们的研究表明,栅极长度(LG)从30 nm下降到3 nm,伴随着使用不同的栅极介电材料,如二氧化硅(仅SiO2(3 nm))和二氧化铪(HfO2)即(SiO2 (2 nm) + HfO2 (1 nm))。分析在线性(欧姆)区域进行,以观察放大器或模拟应用的可变电阻,并在饱和区域进行分析,以分析压控电流源(VCCS)应用。为了全面评估器件在纳米状态下的电学性能,调用量子模型来获得准确的指标,如亚阈值摆幅(SS)、漏极诱导势垒降低(DIBL)、开电流(ION)、关电流(IOFF)和离子/IOFF比。有趣的是,即使在5 nm和3 nm的超尺度尺寸上,我们的器件也表现出了显著的电学性能,IOFF在5 nm处达到1013,在3 nm处达到1011,而当采用HfO2栅极堆叠作为栅极介电材料时,离子在两个尺寸上都保持了~ 106的水平。我们的研究结果表明,高k材料的集成对于实现卓越的器件性能至关重要,特别是在降低LG值的情况下。此外,我们通过研究跨导(gm)和跨导产生因子(TGF)等附加参数来探索晶体管的缩放灵活性。分析了纳米片场效应管的尺度对温度的影响。分析表明,与SiO2相比,采用HfO2栅极叠加的超尺度纳米片FET能够驱动放大器和VCCS应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信