电控传动比纳米磁齿轮

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Maddalena Fiorentino;Davi Rodrigues;Riccardo Tomasello;Mario Carpentieri;Giovanni Finocchio;Francesca Garesci
{"title":"电控传动比纳米磁齿轮","authors":"Maddalena Fiorentino;Davi Rodrigues;Riccardo Tomasello;Mario Carpentieri;Giovanni Finocchio;Francesca Garesci","doi":"10.1109/OJNANO.2025.3567022","DOIUrl":null,"url":null,"abstract":"Magnetic gears offer a reliable and vibration-free alternative to traditional mechanical gears. At the micro- and nanoscale, electrical manipulation of magnetic domains can further enhance the performance and versatility of these gears. In this work, we introduce the concept of electrically tunable magnetic nanogears and propose a nanomagnetic gear design that operates at the mesoscopic scale and exploits the electrical manipulation of magnetic textures and stray field coupling to achieve precise, contactless and tunable torque transmission. This device concept is scalable and offers a continuously adjustable electrical transmission ratio between two gears by exploiting the spin-orbit torque observed in nanomagnetic devices. We have analyzed the coupling of magnetic domains in two parallel circular nanotracks, each serving as a rotor in the gear system, using experimentally realistic material parameters. By exploiting the current-driven motion of the magnetic domains, we derive an ideal transmission ratio given by <italic>ω<sub>2</sub></i>/<italic>ω<sub>1</sub></i> = 1 + <italic>ω<sub>d</sub></i>/<italic>ω<sub>1</sub></i> where <italic>ω<sub>2</sub></i> and <italic>ω<sub>1</sub></i> are the mechanical angular velocities of the driven (output) and driving (input) rotors, respectively, and <italic>ω<sub>d</sub></i>(<italic>J</i>) is the current-driven angular velocity of the magnetic domains valid when the two rotors are fully coupled via stray fields. Numerical calculations show that this nanogear can work up to current densities <italic>J</i> of 4.10<sup>12</sup> A/m<sup>2</sup> and distances of 30 nm. This work paves the way for the development of a new generation of highly tunable nanomagnetic gears with potential applications in nano-actuators, micromachines and other nanoscale devices.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"58-65"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10985797","citationCount":"0","resultStr":"{\"title\":\"Nanomagnetic Gears With Electrically Controlled Transmission Ratio\",\"authors\":\"Maddalena Fiorentino;Davi Rodrigues;Riccardo Tomasello;Mario Carpentieri;Giovanni Finocchio;Francesca Garesci\",\"doi\":\"10.1109/OJNANO.2025.3567022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic gears offer a reliable and vibration-free alternative to traditional mechanical gears. At the micro- and nanoscale, electrical manipulation of magnetic domains can further enhance the performance and versatility of these gears. In this work, we introduce the concept of electrically tunable magnetic nanogears and propose a nanomagnetic gear design that operates at the mesoscopic scale and exploits the electrical manipulation of magnetic textures and stray field coupling to achieve precise, contactless and tunable torque transmission. This device concept is scalable and offers a continuously adjustable electrical transmission ratio between two gears by exploiting the spin-orbit torque observed in nanomagnetic devices. We have analyzed the coupling of magnetic domains in two parallel circular nanotracks, each serving as a rotor in the gear system, using experimentally realistic material parameters. By exploiting the current-driven motion of the magnetic domains, we derive an ideal transmission ratio given by <italic>ω<sub>2</sub></i>/<italic>ω<sub>1</sub></i> = 1 + <italic>ω<sub>d</sub></i>/<italic>ω<sub>1</sub></i> where <italic>ω<sub>2</sub></i> and <italic>ω<sub>1</sub></i> are the mechanical angular velocities of the driven (output) and driving (input) rotors, respectively, and <italic>ω<sub>d</sub></i>(<italic>J</i>) is the current-driven angular velocity of the magnetic domains valid when the two rotors are fully coupled via stray fields. Numerical calculations show that this nanogear can work up to current densities <italic>J</i> of 4.10<sup>12</sup> A/m<sup>2</sup> and distances of 30 nm. This work paves the way for the development of a new generation of highly tunable nanomagnetic gears with potential applications in nano-actuators, micromachines and other nanoscale devices.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"6 \",\"pages\":\"58-65\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10985797\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10985797/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10985797/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁齿轮提供了一个可靠的和无振动的替代传统的机械齿轮。在微观和纳米尺度上,磁畴的电操纵可以进一步提高这些齿轮的性能和多功能性。在这项工作中,我们引入了电可调谐磁性纳米齿轮的概念,并提出了一种在介观尺度上工作的纳米磁性纳米齿轮设计,利用磁织构和杂散场耦合的电操纵来实现精确、非接触和可调谐的扭矩传输。这种装置概念是可扩展的,并通过利用纳米磁性装置中观察到的自旋轨道扭矩,在两个齿轮之间提供连续可调的电传动比。我们利用实验中真实的材料参数,分析了作为齿轮系统转子的两个平行圆形纳米轨道的磁畴耦合。通过利用磁畴的电流驱动运动,我们推导出一个理想的传动比:ω2/ω1 = 1 + ωd/ω1,其中ω2和ω1分别是驱动(输出)和驱动(输入)转子的机械角速度,ωd(J)是两个转子通过杂散场完全耦合时有效的电流驱动磁畴角速度。数值计算表明,这种纳米齿轮可以在电流密度J为4.1012 A/m2和距离为30 nm的情况下工作。这项工作为开发新一代高度可调的纳米磁齿轮铺平了道路,这些齿轮在纳米致动器、微机械和其他纳米级器件中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanomagnetic Gears With Electrically Controlled Transmission Ratio
Magnetic gears offer a reliable and vibration-free alternative to traditional mechanical gears. At the micro- and nanoscale, electrical manipulation of magnetic domains can further enhance the performance and versatility of these gears. In this work, we introduce the concept of electrically tunable magnetic nanogears and propose a nanomagnetic gear design that operates at the mesoscopic scale and exploits the electrical manipulation of magnetic textures and stray field coupling to achieve precise, contactless and tunable torque transmission. This device concept is scalable and offers a continuously adjustable electrical transmission ratio between two gears by exploiting the spin-orbit torque observed in nanomagnetic devices. We have analyzed the coupling of magnetic domains in two parallel circular nanotracks, each serving as a rotor in the gear system, using experimentally realistic material parameters. By exploiting the current-driven motion of the magnetic domains, we derive an ideal transmission ratio given by ω2/ω1 = 1 + ωd/ω1 where ω2 and ω1 are the mechanical angular velocities of the driven (output) and driving (input) rotors, respectively, and ωd(J) is the current-driven angular velocity of the magnetic domains valid when the two rotors are fully coupled via stray fields. Numerical calculations show that this nanogear can work up to current densities J of 4.1012 A/m2 and distances of 30 nm. This work paves the way for the development of a new generation of highly tunable nanomagnetic gears with potential applications in nano-actuators, micromachines and other nanoscale devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信