{"title":"Management of Phonon Transport in Lateral Direction for Gap-Controlled Si Nanopillar/SiGe Interlayer Composite Materials","authors":"Daisuke Ohori;Min-Hui Chuang;Asahi Sato;Sou Takeuchi;Masayuki Murata;Atsushi Yamamoto;Ming-Yi Lee;Kazuhiko Endo;Yiming Li;Jenn-Hwan Tarng;Yao-Jen Lee;Seiji Samukawa","doi":"10.1109/OJNANO.2021.3131165","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3131165","url":null,"abstract":"The phonon transport in the lateral direction for gap-controlled Si nanopillar (NP) /SiGe interlayer composite materials was investigated to eliminate heat generation in the channel area for advanced MOS transistors. The gap-controlled Si NP/SiGe composite layer showed 1/250 times lower thermal conductivity than Si bulk. Then, the phonon transport behavior in lateral direction could be predicted by the combination between the 3-omega measurement method for thermal conductivity and the Landauer approach for phonon transport in Si NP/Si\u0000<sub>0.7</sub>\u0000Ge\u0000<sub>0.3</sub>\u0000 interlayer composite structure. We found that the NP structure could regulate the phonon transport in the lateral direction by changing the NP gaps by preventing the phonon transportation from the drain region and the potential heat generation. As such, this structure achieves the first step toward phonon transport management in the same electron transportation direction of planar-type MOSFETs and represents a promising solution to heat generation for advanced CMOS devices.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"148-152"},"PeriodicalIF":1.7,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09628021.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3482736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingliang Zhang;Xiaokuo Yang;Huanqing Cui;Zhigang Gu;Zhenglin Han
{"title":"A Design Methodology of Line Feedback Shift Registers With Quantum Cellular Automata","authors":"Mingliang Zhang;Xiaokuo Yang;Huanqing Cui;Zhigang Gu;Zhenglin Han","doi":"10.1109/OJNANO.2021.3129858","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3129858","url":null,"abstract":"The quantum-dot cellular automata (QCA) present great promising advantages for emerging nano logic circuits. However, feedback design in QCA sequential circuit is often a big problem. Especially in line feedback shift registers (LFSR), each feedback loop consists of at least a modulo-2 adder and a trigger unit, which is hard to implement using the conventional methods. Given the importance of LFSR in communication systems, a design methodology with QCA is proposed in this work. At first, a new structure is presented to be used in every single feedback LFSR since it can make the feedback loop consume only one clock cycle of delay. Subsequently, quantitative criteria are presented to judge whether any multi-feedback LFSR can be directly designed using the proposed structure. LFSR that cannot satisfy the criteria are supposed to be transformed to their equivalent forms. We verify any LFSR can be transformed to the type of single feedback, according to the theorem of searching the monic and irreducible polynomials over Galois field GF (2). The step-by-step method of transforming multi-feedback into single feedback is given on the consideration of all kinds of cases. Further, two other simple transforming methods are presented to cope with the exponential growth of clock delay in the multi-to-single transforming method. The most remarkable advantage of this series of methods is to keep from introducing undesired bits into the payload data flowing in the sequential circuits.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"129-139"},"PeriodicalIF":1.7,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09625794.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3515466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Periodic Solution of DNA Catalytic Reaction Model With Random Disturbance","authors":"Hui Lv;Huiwen Li;Qiang Zhang","doi":"10.1109/OJNANO.2021.3130043","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3130043","url":null,"abstract":"The realization of molecular logic circuit is inseparable from the design and analysis of catalytic reaction chain, and the DNA catalytic gate plays an important role in it. Discuss the nature of the solution to DNA catalytic reaction system, using Khasminskii's periodicity and Lyapunov analysis methods to obtain the existence of non-trivial positive periodic solutions of the system, and the solution is globally attractive. The existence of the solution indicates that according to the mathematical model established by the DNA catalytic reaction system, the system may reach the expected concentration value of an ideal state and obtain better reaction data, which provides a theoretical basis for the realization of the DNA catalytic gate function. Numerical simulation results show that under the influence of random disturbance and periodic parameters, the solution to the random DNA catalytic reaction system exists and is globally attractive, which also reflects that the DNA catalytic reaction system can reach an ideal reaction state. The solution to the DNA catalytic system with random disturbance will converge on a certain value and oscillate periodically between the solution to the deterministic system.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"140-147"},"PeriodicalIF":1.7,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09625705.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3515470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphene and Carbon Nanotubes for Electronics Nanopackaging","authors":"Gabriele Boschetto;Stefania Carapezzi;Aida Todri-Sanial","doi":"10.1109/OJNANO.2021.3127652","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3127652","url":null,"abstract":"In recent years, the aggressive downscaling of electronic components has led to highly dense and power-hungry devices. With Moore’s law expected to soon reach its physical limit, there is a pressing need to significantly improve the efficiency and performance not only of nanodevices, but also of the embedding environment in which such nanodevices are integrated. In this context, key for improving the performance and for reducing both system cost and size is electronics packaging. However, electronics packaging at the nanoscale (i.e., nanopackaging) is currently facing several technological challenges, as in such scale conventional materials present intrinsic physical limitations. To address this, it becomes necessary to replace these latter with novel alternatives, such as low-dimensional carbon-based nanomaterials. Carbon nanotubes (CNTs) and graphene (materials with 1D and 2D dimensionality, respectively) have the potential to be successfully integrated into traditional silicon-based electronics as well as with beyond-silicon electronics, and their unique electrical, thermal, mechanical, and optical properties could be key enablers for significant performance improvements. In this short review we describe why these nanomaterials are very promising for electronics nanopackaging, and we outline the key application areas, mainly interconnects, thermal management, and flexible devices.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"120-128"},"PeriodicalIF":1.7,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09613740.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3515458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Enhancement of Large Crossbar Resistive Memories With Complementary and 1D1R-1R1D RRAM Structures","authors":"Khitem Lahbacha;Fakhreddine Zayer;Hamdi Belgacem;Wael Dghais;Antonio Maffucci","doi":"10.1109/OJNANO.2021.3124846","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3124846","url":null,"abstract":"The paper proposes novel solutions to improve the signal and thermal integrity of crossbar arrays of Resistive Random-Access Memories, that are among the most promising technologies for the 3D monolithic integration. These structures suffer from electrothermal issues, due to the heat generated by the power dissipation during the write process. This paper explores novel solutions based on new architectures and materials, for managing the issues related to the voltage drop along the interconnects and to thermal crosstalk between memory cells. The analyzed memristor is the 1 Diode - 1 Resistor memory. The two architectural solutions are given by a reverse architecture and a complementary resistive switching one. Compared to conventional architectures, both of them are also reducing the number of layers where the bias is applied. The electrothermal performance of these new structures is compared to that of the reference one, for a case-study given by a 4 × 4 × 4 array. To this end, a full-3D numerical Multiphysics model is implemented and successfully compared against other models in literature. The possibility of changing the interconnect materials is also analyzed. The results of this performance analysis clearly show the benefits of moving to these novel architectures, together with the choice of new materials.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"111-119"},"PeriodicalIF":1.7,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09601273.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3488262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Zhao;Yu Dian Lim;Hong Yu Li;Guidoni Luca;Chuan Seng Tan
{"title":"Advanced 3D Integration Technologies in Various Quantum Computing Devices","authors":"Peng Zhao;Yu Dian Lim;Hong Yu Li;Guidoni Luca;Chuan Seng Tan","doi":"10.1109/OJNANO.2021.3124363","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3124363","url":null,"abstract":"As a key approach to augment Moore's Law scaling, 3D integration technologies have enabled small form factor, low cost, diverse, modular and flexible assembly of integrated circuits in the semiconductor industry. It is therefore essential to adopt these technologies to the quantum computing devices which are at the nascent stage and generally require large scale integration to be practical. In this review, we focus on four popular quantum bit (qubit) candidates (trapped ion, superconducting circuit, silicon spin and photon) which are encoded by distinct physical systems but all intrinsically compatible with advanced CMOS fabrication process. We introduce the specific scalability bottlenecks of each qubit type and present the current solutions using 3D integration technologies. We evaluate and classify these technologies into three main categories based on the hierarchy. A brief discussion regarding the thermal management is also provided. We believe this review serves to provide some useful insights on the contributions of interconnect, integration and packaging to the field of quantum computing where rapid development is ongoing.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"101-110"},"PeriodicalIF":1.7,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09599482.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3514497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heeyuen Koh;Jae Gyung Lee;Jae Young Lee;Ryan Kim;Osamu Tabata;Jin-Woo Kim;DO-Nyun Kim
{"title":"Design Approaches and Computational Tools for DNA Nanostructures","authors":"Heeyuen Koh;Jae Gyung Lee;Jae Young Lee;Ryan Kim;Osamu Tabata;Jin-Woo Kim;DO-Nyun Kim","doi":"10.1109/OJNANO.2021.3119913","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3119913","url":null,"abstract":"Designing a structure in nanoscale with desired shape and properties has been enabled by structural DNA nanotechnology. Design strategies in this research field have evolved to interpret various aspects of increasingly more complex nanoscale assembly and to realize molecular-level functionality by exploring static to dynamic characteristics of the target structure. Computational tools have naturally been of significant interest as they are essential to achieve a fine control over both shape and physicochemical properties of the structure. Here, we review the basic design principles of structural DNA nanotechnology together with its computational analysis and design tools.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"86-100"},"PeriodicalIF":1.7,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9573317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3481058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modifying Threshold Voltages to n- and p- Type FinFETs by Work Function Metal Stacks","authors":"Wen-Teng Chang;Meng-His Li;Chun-Hao Hsu;Wen-Chin Lin;Wen-Kuan Yeh","doi":"10.1109/OJNANO.2021.3109897","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3109897","url":null,"abstract":"High-k metal gate technology improves the performance and reduces the gate leakage current of metal-oxide-semiconductor field-effect transistors (MOSFETs). This study investigated four different work function metal (WFM) stacks in the gate of fin field-effect transistors (FinFETs) on the same substrate. These devices not only successfully produced distinct levels of threshold voltages (|V\u0000<sub>t</sub>\u0000|) but also converted n- to p-type features merely by adding p-type WFM in the gate of the MOSFETs. All of the devices satisfied short-channel effects with shrinking channel length. The gate-to-body electric field induced drain leakage due to the nature of bulk FinFETs. However, the n- and p-type gate stacks presented different gate current leakage. For reliability, hot carrier injection (HCI) could have a higher reliability impact than the negative-bias temperature instability (NBTI) for p-MOSFET, although the stress voltage of HCI was roughly half that of the NBTI test. This multi-threshold voltage tuning allows designers to design CMOS and choose the trade-off between low power consumption and high performance on the same platform.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"72-77"},"PeriodicalIF":1.7,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09528922.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3482478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baocheng Wang;Xuelian Wei;Junhuan Chen;Zhihao Yuan;Yapeng Shi;Zhiyi Wu;Zhong Lin Wang
{"title":"Self-Powered Miniaturized Acceleration Sensor Based on Rationally Patterned Electrodes","authors":"Baocheng Wang;Xuelian Wei;Junhuan Chen;Zhihao Yuan;Yapeng Shi;Zhiyi Wu;Zhong Lin Wang","doi":"10.1109/OJNANO.2021.3104961","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3104961","url":null,"abstract":"Acceleration sensors have a wide variety of applications for industrial engineering, biology and navigation. However, passive sensing, narrow detection range, large size, and high manufacturing cost curb their further development. Here, we present a miniaturized acceleration sensor (MAS) with rationally patterned electrodes, based on the single electrode triboelectric mechanism, featuring small size, high accuracy, large detection scale, and environmental friendliness. A stainless-steel ball, as the moving part of the MAS, experiences physical movement that is converted into an electrical signal. Equipped with rationally patterned electrodes, the MAS retains the smallest size and lowest weight compared with the currently reported self-powered acceleration sensors. Benefiting from the voltage-relationship-based direction detection mechanism, eight directions can be identified by one TENG module. Consequently, rotated 22.5° relatively, two TENG modules enable the MAS to detect 16 directions. Moreover, accelerations ranging from 0.1 m/s\u0000<sup>2</sup>\u0000 to 50 m/s\u0000<sup>2</sup>\u0000 can be identified according to the relationship of response time and accelerations in the horizontal direction. The relationship is obtained through the measurements of the sum of output voltages (\u0000<italic>V<sub>SOC</sub></i>\u0000) for the four bottom electrodes with varying accelerations. In addition, no distinct decrease of \u0000<italic>V<sub>SOC</sub></i>\u0000 is observed after continuously operating for 2000 circles, presenting excellent robustness. Hence, this cost-effective and rationally patterned MAS reveals great potential for human machine interaction, VR/AR (virtual/augmented reality), sports training, and smart city.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"78-85"},"PeriodicalIF":1.7,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2021.3104961","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3482801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He Wang;Nicoleta Cucu Laurenciu;Sorin Dan Cotofana
{"title":"A Reconfigurable Graphene-Based Spiking Neural Network Architecture","authors":"He Wang;Nicoleta Cucu Laurenciu;Sorin Dan Cotofana","doi":"10.1109/OJNANO.2021.3094761","DOIUrl":"https://doi.org/10.1109/OJNANO.2021.3094761","url":null,"abstract":"In the paper we propose a reconfigurable graphene-based Spiking Neural Network (SNN) architecture and a training methodology for initial synaptic weight values determination. The proposed graphene-based platform is flexible, comprising a programmable synaptic array which can be configured for different initial synaptic weights and plasticity functionalities and a spiking neuronal array, onto which various neural network structures can be mapped according to the application requirements and constraints. To demonstrate the validity of the synaptic weights training methodology and the suitability of the proposed SNN architecture for practical utilization, we consider character recognition and edge detection applications. In each case, the graphene-based platform is configured as per the application tailored SNN topology and initial state and SPICE simulated to evaluate its reaction to the applied input stimuli. For the first application, a 2-layer SNN is used to perform character recognition for 5 vowels. Our simulation indicates that the graphene-based SNN can achieve comparable recognition accuracy with the one delivered by a functionally equivalent Artificial Neural Network. Further, we reconfigure the architecture for a 3-layer SNN to perform edge detection on 2 grayscale images. SPICE simulation results indicate that the edge extraction results are close agreement with the one produced by classical edge detection operators. Our results suggest the feasibility and flexibility of the proposed approach for various application purposes. Moreover, the utilized graphene-based synapses and neurons operate at low supply voltage, consume low energy per spike, and exhibit small footprints, which are desired properties for largescale energy-efficient implementations.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"59-71"},"PeriodicalIF":1.7,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2021.3094761","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3482962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}