Osteogenic Effect of Rabbit Periosteum-Derived Precursor Cells Co-Induced by Electric Stimulation and Adipose-Derived Stem Cells in a 3D Co-Culture System

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alvin Chao-Yu Chen;Yun-Wen Tong;Chih-Hao Chiu;Kin Fong Lei
{"title":"Osteogenic Effect of Rabbit Periosteum-Derived Precursor Cells Co-Induced by Electric Stimulation and Adipose-Derived Stem Cells in a 3D Co-Culture System","authors":"Alvin Chao-Yu Chen;Yun-Wen Tong;Chih-Hao Chiu;Kin Fong Lei","doi":"10.1109/OJNANO.2021.3131653","DOIUrl":null,"url":null,"abstract":"Periosteum-derived progenitor cells (PDPCs) are highly promising cell sources for bone fracture healing because of their stem cell-like multipotency to undergo osteogenesis and chondrogenesis. Both externally physical stimulation and internally biochemical signal were reported to enhance osteogenic differentiation of bone tissues. Electric stimulation (ES) could trigger the differentiation of stem cells, like mesenchymal stem cells (MSCs) and adipose-derived stem cells (ADSCs). But the effect is still unclear on PDPCs. In order to investigate the differentiation ability of PDPCs co-induced by ES and ADSCs, a biomimetic 3-dimensional (3D) co-culture system was developed for providing ES and co-culturing with ADSCs. Gene expression was studied after a 3-day culture course. From our results, osteogenic differentiation of PDPCs was significantly activated under the ES of 0.7 V/cm, 80 kHz, and 3 hrs/day. Moreover, co-culturing with ADSCs during the ES treatment was found to have synergistic effect of osteogenic differentiation. In addition, chondrogenic differentiation was shown when the PDPCs were cultured for a long culture course. In summary, osteogenic differentiation of PDPCs was shown to be co-induced by ES and ADSCs. This study provides significant insights of the PDPC therapy for bone tissue regeneration.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"153-160"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9316416/09633183.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9633183/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Periosteum-derived progenitor cells (PDPCs) are highly promising cell sources for bone fracture healing because of their stem cell-like multipotency to undergo osteogenesis and chondrogenesis. Both externally physical stimulation and internally biochemical signal were reported to enhance osteogenic differentiation of bone tissues. Electric stimulation (ES) could trigger the differentiation of stem cells, like mesenchymal stem cells (MSCs) and adipose-derived stem cells (ADSCs). But the effect is still unclear on PDPCs. In order to investigate the differentiation ability of PDPCs co-induced by ES and ADSCs, a biomimetic 3-dimensional (3D) co-culture system was developed for providing ES and co-culturing with ADSCs. Gene expression was studied after a 3-day culture course. From our results, osteogenic differentiation of PDPCs was significantly activated under the ES of 0.7 V/cm, 80 kHz, and 3 hrs/day. Moreover, co-culturing with ADSCs during the ES treatment was found to have synergistic effect of osteogenic differentiation. In addition, chondrogenic differentiation was shown when the PDPCs were cultured for a long culture course. In summary, osteogenic differentiation of PDPCs was shown to be co-induced by ES and ADSCs. This study provides significant insights of the PDPC therapy for bone tissue regeneration.
电刺激诱导兔骨膜源性前体细胞与脂肪源性干细胞在三维共培养系统中的成骨作用
骨膜源性祖细胞(PDPCs)具有干细胞样的多能性,可进行成骨和软骨形成,是骨折愈合中极具前景的细胞来源。体外物理刺激和体内生化信号均可促进骨组织的成骨分化。电刺激(ES)可以触发干细胞的分化,如间充质干细胞(MSCs)和脂肪源性干细胞(ADSCs)。但对pdpc的影响尚不清楚。为了研究ES和ADSCs共同诱导PDPCs的分化能力,我们建立了一个仿生三维(3D)共培养系统,提供ES和ADSCs共培养。3 d培养后研究基因表达。结果表明,在0.7 V/cm、80 kHz、3小时/天的电刺激下,PDPCs的成骨分化明显被激活。此外,在ES治疗过程中发现与ADSCs共培养具有成骨分化的协同作用。此外,在长时间培养过程中,PDPCs表现出软骨分化。综上所述,胚胎干细胞和ADSCs共同诱导了PDPCs的成骨分化。本研究为PDPC治疗骨组织再生提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信