梯形纳米轨道上的VCMA梯度驱动Skyrmion用于赛道记忆

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bikash Sharma;Pema Rinzing Bhutia;Ravish Kumar Raj;Bibek Chettri;Brajesh Kumar Kaushik;Sonal Shreya
{"title":"梯形纳米轨道上的VCMA梯度驱动Skyrmion用于赛道记忆","authors":"Bikash Sharma;Pema Rinzing Bhutia;Ravish Kumar Raj;Bibek Chettri;Brajesh Kumar Kaushik;Sonal Shreya","doi":"10.1109/OJNANO.2025.3550173","DOIUrl":null,"url":null,"abstract":"Magnetic skyrmion has great potential as information carriers in next-generation logic, neuromorphic computing, and memory devices because of its topological stability, incredibly compact size, and low current consumption required to operate it. In this work, the computational demonstration of a skyrmion controlled by a voltage controlled magnetic anisotropy (VCMA) gradient on a trapezoidal nanotrack is studied for the application of racetrack memory. The trapezoidal nanotrack aids in guiding the skyrmion's motion under the anisotropy gradient by leveraging the edge repulsion force. By utilizing a defect, the proposed device ensures a continuous flow of binary bits ‘0’ and ‘1’ without any accumulation on the racetrack. The higher angle (<italic>θ<sub>high</sub></i>) and higher anisotropy gradient (<italic>ΔK<sub>u</sub><sub>-high</sub></i>) of the trapezoidal nanotrack accelerates the skyrmion owing to higher edge repulsion force and energy gradient force. The maximum speed of 1.27 m/s was achieved by the skyrmion, and the minimum time taken for the skyrmion to reach the detector from the nucleation point was 2.16 ns. The energy used to maintain the electric field is 4.58<italic>fJ</i> per bit operation. This presents a novel approach to manipulate skyrmions under anisotropy gradient (<italic>ΔK<sub>u</sub></i>) on the trapezoidal nanotrack, paving the way for the development of improved skyrmion racetrack memory (sk-RM).","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"44-50"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934757","citationCount":"0","resultStr":"{\"title\":\"VCMA Gradient-Driven Skyrmion on a Trapezoidal Nanotrack for Racetrack Memory Application\",\"authors\":\"Bikash Sharma;Pema Rinzing Bhutia;Ravish Kumar Raj;Bibek Chettri;Brajesh Kumar Kaushik;Sonal Shreya\",\"doi\":\"10.1109/OJNANO.2025.3550173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic skyrmion has great potential as information carriers in next-generation logic, neuromorphic computing, and memory devices because of its topological stability, incredibly compact size, and low current consumption required to operate it. In this work, the computational demonstration of a skyrmion controlled by a voltage controlled magnetic anisotropy (VCMA) gradient on a trapezoidal nanotrack is studied for the application of racetrack memory. The trapezoidal nanotrack aids in guiding the skyrmion's motion under the anisotropy gradient by leveraging the edge repulsion force. By utilizing a defect, the proposed device ensures a continuous flow of binary bits ‘0’ and ‘1’ without any accumulation on the racetrack. The higher angle (<italic>θ<sub>high</sub></i>) and higher anisotropy gradient (<italic>ΔK<sub>u</sub><sub>-high</sub></i>) of the trapezoidal nanotrack accelerates the skyrmion owing to higher edge repulsion force and energy gradient force. The maximum speed of 1.27 m/s was achieved by the skyrmion, and the minimum time taken for the skyrmion to reach the detector from the nucleation point was 2.16 ns. The energy used to maintain the electric field is 4.58<italic>fJ</i> per bit operation. This presents a novel approach to manipulate skyrmions under anisotropy gradient (<italic>ΔK<sub>u</sub></i>) on the trapezoidal nanotrack, paving the way for the development of improved skyrmion racetrack memory (sk-RM).\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"6 \",\"pages\":\"44-50\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934757\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10934757/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10934757/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性skyrmion由于其拓扑稳定性、令人难以置信的紧凑尺寸和操作所需的低电流消耗,在下一代逻辑、神经形态计算和存储设备中具有巨大的信息载体潜力。本文研究了压控磁各向异性梯度(VCMA)控制的梯形纳米轨道上的skyrmion在赛道存储器中的应用。在各向异性梯度下,梯形纳米轨道利用边缘斥力引导粒子运动。通过利用缺陷,所提出的装置确保了二进制位‘ 0 ’和‘ 1 ’的连续流动,而不会在赛道上产生任何累积。高棱角(θhigh)和高各向异性梯度(ΔKu-high)使梯形纳米轨道的边缘斥力和能量梯度力增大,从而加速了轨道的运动。该粒子的最大速度为1.27 m/s,从成核点到达探测器所需的最小时间为2.16 ns。用于维持电场的能量为4.58fJ / bit操作。提出了一种在各向异性梯度(ΔKu)下在梯形纳米轨道上操纵skyrmion的新方法,为改进skyrmion赛道存储器(sk-RM)的开发铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VCMA Gradient-Driven Skyrmion on a Trapezoidal Nanotrack for Racetrack Memory Application
Magnetic skyrmion has great potential as information carriers in next-generation logic, neuromorphic computing, and memory devices because of its topological stability, incredibly compact size, and low current consumption required to operate it. In this work, the computational demonstration of a skyrmion controlled by a voltage controlled magnetic anisotropy (VCMA) gradient on a trapezoidal nanotrack is studied for the application of racetrack memory. The trapezoidal nanotrack aids in guiding the skyrmion's motion under the anisotropy gradient by leveraging the edge repulsion force. By utilizing a defect, the proposed device ensures a continuous flow of binary bits ‘0’ and ‘1’ without any accumulation on the racetrack. The higher angle (θhigh) and higher anisotropy gradient (ΔKu-high) of the trapezoidal nanotrack accelerates the skyrmion owing to higher edge repulsion force and energy gradient force. The maximum speed of 1.27 m/s was achieved by the skyrmion, and the minimum time taken for the skyrmion to reach the detector from the nucleation point was 2.16 ns. The energy used to maintain the electric field is 4.58fJ per bit operation. This presents a novel approach to manipulate skyrmions under anisotropy gradient (ΔKu) on the trapezoidal nanotrack, paving the way for the development of improved skyrmion racetrack memory (sk-RM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信