{"title":"Using next-generation sequencing approach for discovery and characterization of plant molecular markers","authors":"Bahman Panahi , Hossein Mohammadzadeh Jalaly , Rasmieh Hamid","doi":"10.1016/j.cpb.2024.100412","DOIUrl":"10.1016/j.cpb.2024.100412","url":null,"abstract":"<div><div>Crop development is critical to meeting the world's growing food needs, especially in light of the challenges posed by climate change and population growth. Molecular markers (MM) have become an indispensable tool in breeding programmes as they enable rapid trait selection and monitoring of genetic variation. Next generation sequencing (NGS) has transformed genomics by providing low-cost, high-throughput technologies for the identification of markers in plants. This review focuses on the latest applications, advances and opportunities of NGS in the discovery and characterization of MM in plants. We have addressed the involvement of NGS in the detection of different types of markers such as single nucleotide polymorphisms (SNPs), indels, simple sequence repeats (SSRs) and structural variants (SVs) and their applications in functional genomics and plant breeding. We have also demonstrated the possibility of combining NGS with modern bioinformatics techniques to accelerate the development of markers and improve crop resistance and yield.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100412"},"PeriodicalIF":5.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The simultaneous application of fulvic acid and protein hydrolysate biostimulants enhances cucumber responses to Fe deficiency","authors":"Giacomo Rodegher , Stefano Ambrosini , Tiziana Pandolfini , Serena Zanzoni , Anita Zamboni , Zeno Varanini","doi":"10.1016/j.cpb.2024.100411","DOIUrl":"10.1016/j.cpb.2024.100411","url":null,"abstract":"<div><div>Iron (Fe) is widely recognized as a critical factor in limiting crop production; however, eco-friendly strategies to address its deficiency are still required. The use of biostimulants has displayed promising results in mitigating Fe deficiency. Our hypothesis was that the combined application of two biostimulants with distinct molecular structures - fulvic acid (FA) and protein hydrolysate (PH) - could be more effective than the use of a single compound. The simultaneous presence of FA and PH (MIX) in a Fe-free nutrient solution led to a redistribution of endogenous Fe, resulting in a higher leaf SPAD index. Furthermore, the addition of FeCl<sub>3</sub> as a Fe source (resupply) in MIX-treated plants enhanced the biostimulant effect, as evidenced by increased dry root and shoot weight and a more developed root system. In addition, the expression of Strategy-I-related genes, <em>CsFRO1</em> and <em>CsIRT1</em>, remained elevated. These effects can be attributed to improved interaction between the roots and biostimulants through the formation of the FA-PH complex, as demonstrated by circular dichroism and isothermal titration calorimetry analyses.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100411"},"PeriodicalIF":5.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of biostimulants on the chemical profile of food crops under normal and abiotic stress conditions","authors":"Salima Boutahiri, Rachid Benrkia, Babalwa Tembeni, Olusola Emmanuel Idowu, Opeyemi Joshua Olatunji","doi":"10.1016/j.cpb.2024.100410","DOIUrl":"10.1016/j.cpb.2024.100410","url":null,"abstract":"<div><div>Biostimulants are substances/micro-organisms that have the ability to stimulate plant growth, nutrition and stress tolerance independently of their nutritional content. They are increasingly replacing the use of chemical fertilizers, which have harmful consequences for the environment. Biostimulants are derived from a variety of sources, including micro-organisms, plant extracts, algae, hydrolysates of animal or plant proteins, and humic substances. They have been tested on a variety of crops under normal and abiotic stress conditions and have succeed each time in proving their effectiveness in improving the chemical composition of plants. This improvement has a positive impact on plants' nutritional properties and resistance to stress conditions. These effects not only have positive impact on human health, but also on climate change challenges, and increasing demand for food. However, the difficulty in interpreting the results obtained from the use of biostimulants is due to their variable composition, which is not always known, making it difficult to determine their modes of action and hence their regulation. The purpose of this review is to highlight the positive effect of biostimulants on the chemical composition of food crops under normal or abiotic stress conditions. It presents an overview of chemical variability in plants and gathers studies that help clarify the effect of biostimulants. Additional studies on economic aspects, research gaps, and future prospects in the field of biostimulants are also discussed.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100410"},"PeriodicalIF":5.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saikat Sena , Ajit Prakash , Johannes Van Staden , Vijay Kumar
{"title":"Epigenetic control of plant regeneration: Unraveling the role of histone methylation","authors":"Saikat Sena , Ajit Prakash , Johannes Van Staden , Vijay Kumar","doi":"10.1016/j.cpb.2024.100408","DOIUrl":"10.1016/j.cpb.2024.100408","url":null,"abstract":"<div><div>It is incredible that plants can actively promote cellular dedifferentiation and regeneration. The change in cell fate is accompanied by modifications to the epigenetic landscape. Plants may regulate developmental processes and environmental adaptation via the establishment, maintenance, and removal of epigenetic changes in addition to genetically encoded variables. Studies on plant regeneration are very important since the underlying processes are connected to basic research in many different domains as well as the development of widely used plant biotechnology. <em>De novo</em> organogenesis, somatic embryogenesis, and tissue regeneration are the three primary kinds of regeneration observed in higher plants. <em>In-vitro</em> culturing may cause histone methylation to reassemble the nuclear architecture. The process of somatic embryogenesis and regeneration relates to different methylation states that regulate gene expression <em>in-vitro</em>. In order to generate huge amounts of top-notch planting materials or to enhance agronomic features that promote crop development, it may be necessary to change the methylation profile. Enhancing the embryogenic potential and totipotency in resistant plant species and specific genotypes could be achievable by developing techniques with the aid of an understanding of the molecular processes behind methylation changes and the acquisition of embryonic cell destiny during <em>in-vitro</em> cultures. Additionally, the methylation profile may help crops adapt to extreme conditions when they experience diverse challenges throughout <em>in-vitro</em> growth. In this article, we examine the studies on how histone methylation affects plant variety and explore the possibilities of targeted epigenetic modification for crop development.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100408"},"PeriodicalIF":5.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taufiq Nawaz , Shah Fahad , Shah Saud , Ruanbao Zhou , Nader R. Abdelsalam , Mohamed M.A. Abdelhamid , Mariusz Jaremko
{"title":"Sustainable nitrogen solutions: Cyanobacteria-powered plant biotechnology for conservation and metabolite production","authors":"Taufiq Nawaz , Shah Fahad , Shah Saud , Ruanbao Zhou , Nader R. Abdelsalam , Mohamed M.A. Abdelhamid , Mariusz Jaremko","doi":"10.1016/j.cpb.2024.100399","DOIUrl":"10.1016/j.cpb.2024.100399","url":null,"abstract":"<div><div>As photosynthetic microorganisms, cyanobacteria play a dominant part in numerous ecological systems owing to their ability to fix carbon and nitrogen and are therefore an essential part of primary production in both aquatic and terrestrial environments. The utility of nitrogen-fixing cyanobacteria in plant biotechnology opens up promising strategies for the conservation and sustainable use of rare, endangered plant species and bioactive cell cultures. Here, we discuss the complicated physiological aspects of biological nitrogen fixation in cyanobacteria and their symbiotic relationship with plants. This review focuses on recent advances in biotechnological tools such as CRISPR-Cas9, nanotechnology and multiomics-based approaches for enhancing plant regeneration systems to cultivate specialized metabolites. We also look at the methods in vitro preservation of plants and how to scale up a culture using bioreactor systems. The review ends by highlighting the promise of cyanobacteria-powered plant biotechnology as a renewable mechanism for rare species conservation and specialized metabolites production, providing an optimistic modal, formative future direction in plant biosynthesis.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100399"},"PeriodicalIF":5.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yeimy C. Ramírez–Rodas , Ma. de Lourdes Arévalo–Galarza , Jorge Cadena–Iñiguez , Ramón M. Soto–Hernández , Cecilia B. Peña–Valdivia , José A. Guerrero–Analco , Juan L. Monribot–Villanueva , Rubén San Miguel-Chávez
{"title":"Metabolomic analyses during chayote (Sechium edule var. virens levis) seed germination under the influence of growth regulators","authors":"Yeimy C. Ramírez–Rodas , Ma. de Lourdes Arévalo–Galarza , Jorge Cadena–Iñiguez , Ramón M. Soto–Hernández , Cecilia B. Peña–Valdivia , José A. Guerrero–Analco , Juan L. Monribot–Villanueva , Rubén San Miguel-Chávez","doi":"10.1016/j.cpb.2024.100407","DOIUrl":"10.1016/j.cpb.2024.100407","url":null,"abstract":"<div><div>The fruit of chayote (<em>Sechium edule</em>) has a recalcitrant seed, as a consequence, viviparism (seed germination inside the fruit) occurs in the first 13 days after harvest. However, at the moment no phytohormone–dependent metabolic changes have been described that would allow us to understand the hormonal relationship during germination. Untargeted and targeted metabolomic analyses were performed on chayote seed treated with plant growth regulators, evaluated in fruits at 7 and 10 days after harvest. Exogenous application of 2–chloroethylphosphonic acid (ethylene releaser) and gibberellic acid<sub>3</sub> accelerated germination and viviparism, while auxins and abscisic acid delayed them. Metabolic pathways and possible key metabolites regulating germination were identified, including ethylene, gibberellins, auxins and abscisic acid. This study suggests a likely hormone interaction model during chayote seed germination.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100407"},"PeriodicalIF":5.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arabidopsis B-BOX DOMAIN PROTEIN14/15/16 form a feedback loop with ELONGATED HYPOCOTYL 5 and PHYTOCHROME-INTERACTING FACTORs to regulate hypocotyl elongation","authors":"Zeeshan Nasim , Nouroz Karim , Hendry Susila , Ji Hoon Ahn","doi":"10.1016/j.cpb.2024.100395","DOIUrl":"10.1016/j.cpb.2024.100395","url":null,"abstract":"<div><div>Light-regulated developmental processes such as photomorphogenesis and flowering play important roles in the plant life cycle, from seedling emergence to reproduction. Three members of the <em>Arabidopsis thaliana</em> B-BOX DOMAIN PROTEIN (BBX) family, <em>BBX14</em>, <em>BBX15</em>, and <em>BBX16</em> (hereafter <em>BBX14/15/16</em>), redundantly regulate flowering time, but whether this genetic redundancy also affects the regulation of photomorphogenesis remains unclear. Here, we show that light induces <em>BBX14/15/16</em> expression primarily in the hypocotyl, where BBX14/15/16 redundantly repress hypocotyl elongation. PHYTOCHROME-INTERACTING FACTORs (PIFs) negatively regulate <em>BBX14/15/16</em> expression mainly through GOLDEN-LIKE proteins (GLKs); however, analyses of ChIP-seq data showed that PIFs are recruited to the <em>BBX14/15/16</em> loci and can also regulate these genes independently of GLKs. ELONGATED HYPOCOTYL 5 (HY5), a major regulator of photomorphogenesis, also directly binds to the <em>BBX14/15/16</em> loci and regulates their expression. Simultaneous knockdown of <em>BBX14/15/16</em> resulted in significant downregulation of <em>HY5</em> and upregulation of <em>PIF</em>s, suggesting that these factors participate in a feedback regulatory loop. Indeed, BBX14/15/16 induced <em>HY5</em> promoter activity by binding to the <em>HY5</em> promoter. The brassinosteroid-responsive gene <em>TOUCH4</em> (<em>TCH4</em>) and several auxin-responsive <em>SMALL AUXIN UPREGULATED RNA</em> (<em>SAUR</em>) genes were upregulated in the <em>BBX14/15/16</em> knockdown plants, suggesting that auxin and brassinosteroids might participate in BBX14/15/16-mediated hypocotyl regulation. Mutating the predicted BBX-binding sites in <em>SAUR4</em> and <em>TCH4</em> impaired their regulation by BBX14/15/16. We propose that BBX14/15/16, together with HY5 and PIFs, form a feedback loop that regulates the expression of auxin- and brassinosteroid-related genes to modulate hypocotyl elongation.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100395"},"PeriodicalIF":5.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinghui Liu , Yingying Shao , Detian Mu , Yu Zhou , Jialong He , Huan Zhao , Iain W. Wilson , Yao Zhang , Lina Zhu , Deyou Qiu , Qi Tang
{"title":"Genome-wide identification of TCP transcription factors and functional role of UrTCP4 in regulating terpenoid indole alkaloids biosynthesis in Uncaria rhynchophylla","authors":"Xinghui Liu , Yingying Shao , Detian Mu , Yu Zhou , Jialong He , Huan Zhao , Iain W. Wilson , Yao Zhang , Lina Zhu , Deyou Qiu , Qi Tang","doi":"10.1016/j.cpb.2024.100406","DOIUrl":"10.1016/j.cpb.2024.100406","url":null,"abstract":"<div><div><em>Uncaria rhynchophylla</em> is a widely used Chinese herbal medicine known for its terpenoid indole alkaloids (TIAs), which help in treating hypertension. Teosinte branched 1/cycloidea/proliferating cell factors 1/2 (TCP) TFs have been shown to have a role in the growth and development of plants, but the regulation mechanism of UrTCP in the TIAs biosynthesis pathway is yet unknown. In this study, twenty-six <em>UrTCP</em> genes were identified from the genome of <em>U. rhynchophylla,</em> and these genes were classified into three subgroups based on the phylogenetic analysis. <em>UrTCPs</em> from the same group or subgroup share comparable gene structures and conserved motifs. These 26 <em>UrTCP</em> genes were unevenly distributed throughout 22 chromosomes, and gene segmental duplication occurred. The interspecific co-linearity analysis suggested that <em>UrTCP4</em> may have an important function in evolutionary process. The expression patterns analysis of <em>UrTCP</em> genes by RT-qPCR showed most <em>UrTCP</em> genes had the highest expression in leaves and stem hooks. The results of co-expression analysis and phylogenetic relationships screened UrTCP4 as the most likely participant in TIAs and its precursor synthesis. Furthermore, the subcellular localization of UrTCP4 indicated that it is located in nucleus. Dual luciferase assays revealed the UrTCP4 protein could activate or repress the transcription of <em>UrLAMT</em> and <em>Ur7-DLH</em> in the TIAs synthesis pathway. Finally, Yeast-one-hybrid assays demonstrated that the UrTCP4 protein can bind to the promoters of <em>UrLAMT</em> and <em>Ur7-DLH</em>. Thus, UrTCP4 may be involved in the regulation of the TIAs biosynthesis pathway. This research establishes a groundwork for elucidating the functions of <em>UrTCP</em> gene family in <em>U. rhynchophylla</em>, offering new insights into the regulation of TIAs.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100406"},"PeriodicalIF":5.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hira Khalid , Muhammad Hassan Butt , Aziz ur Rehman Aziz , Iqra Ahmad , Farzana Iqbal , Amen Shamim , Umar Nishan , Riaz Ullah , Mohamed A. Ibrahim , Arlindo Alencar Moura , Mohibullah Shah , Wenwen Sun
{"title":"Phytobioinformatics screening of ayurvedic plants for potential α-glucosidase inhibitors in diabetes management","authors":"Hira Khalid , Muhammad Hassan Butt , Aziz ur Rehman Aziz , Iqra Ahmad , Farzana Iqbal , Amen Shamim , Umar Nishan , Riaz Ullah , Mohamed A. Ibrahim , Arlindo Alencar Moura , Mohibullah Shah , Wenwen Sun","doi":"10.1016/j.cpb.2024.100404","DOIUrl":"10.1016/j.cpb.2024.100404","url":null,"abstract":"<div><div>The enzyme α-glucosidase in the small intestine regulates blood glucose levels and stimulates the hydrolysis of oligosaccharides and polysaccharides, increasing glucose levels in the body. Inhibiting this enzyme slows glucose digestion and absorption and as a result post-prandial blood glucose levels remain low, causing decreased insulin demand. Here, we investigated the ayurvedic antidiabetic plants and virtually screened an in-house library of 478 phytochemicals of these plants against the human α-glucosidase. We identified 11 secondary metabolites, including palmitic acid α-monoglyceride, (+)-(2 R)-6-propionyloxyethyl-4′,5,7-trihydroxyisoflavanone, Abruquinone E, and Aurantiamide Acetate, among others, showed stronger interactions with the receptor than the native ligand N-acetyl cysteine. Surprisingly, except one, all of these metabolites were from <em>Abrus precatorius</em> L. [Fabaceae] affirming its ethnopharmacological use against diabetes. The stability of the interactions between the ligands and receptor protein was evaluated through Molecular Dynamic (MD) simulation trajectories including root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), H bonds, β-factor analysis, and binding energy calculation through MM/GBSA method. The efficacy of top metabolites in inhibiting α-glucosidase is depicted in pharmacophore analysis. A comprehensive pharmacokinetics analysis confirmed the druggability, safety, and efficiency of top drug candidates. Additionally, we predicted the interactions of these top metabolites within the biological system. The medicinal properties described in this study will help develop active drug candidates for therapeutic purposes. Further experiments are recommended to prove the effectiveness of these metabolites in inhibiting the α-glucosidase enzyme for exploring their potential in the treatment of diabetes.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100404"},"PeriodicalIF":5.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengcai Pan , Yu Wang , Yiyin Ji , Yang Zhou , Xingyu Jiang
{"title":"Genome-wide identification and expression analysis of the SWEET gene family in sweet sorghum (Sorghum dochna) and the role of SdSWEET01 in sugar transport","authors":"Chengcai Pan , Yu Wang , Yiyin Ji , Yang Zhou , Xingyu Jiang","doi":"10.1016/j.cpb.2024.100405","DOIUrl":"10.1016/j.cpb.2024.100405","url":null,"abstract":"<div><div>The SWEET sugar transporter plays a fundamental role in plant growth and development. In this study, 18 <em>SWEET</em> genes were identified from sweet sorghum (<em>Sorghum dochna</em>), encoding proteins with 231–336 amino acids, molecular weights from 25.15 to 35.69 kDa, and isoelectric points ranging between 6.41 and 9.69. Phylogenetic analysis categorized these proteins into four distinct subgroups. Examination of spatial expression patterns demonstrated that <em>SdSWEET</em> genes were expressed in a tissue-specific manner. Furthermore, their involvement in responses to various abiotic stresses, including cold, heat, drought, and salinity was observed. A yeast complementation assay verified that SdSWEET01, located on the plasma membrane, selectively transported glucose, sucrose, and galactose, while excluding fructose. Transgenic <em>Arabidopsis</em> expressing <em>SdSWEET01</em> exhibited enhanced sugar absorption compared to wild-type plants, resulting in increased sensitivity and growth inhibition under high-sugar conditions. The study provides a detailed functional characterization of <em>SdSWEET</em> genes and emphasizes the critical role of SdSWEET01 in regulating sugar transport.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100405"},"PeriodicalIF":5.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}