{"title":"Using next-generation sequencing approach for discovery and characterization of plant molecular markers","authors":"Bahman Panahi , Hossein Mohammadzadeh Jalaly , Rasmieh Hamid","doi":"10.1016/j.cpb.2024.100412","DOIUrl":null,"url":null,"abstract":"<div><div>Crop development is critical to meeting the world's growing food needs, especially in light of the challenges posed by climate change and population growth. Molecular markers (MM) have become an indispensable tool in breeding programmes as they enable rapid trait selection and monitoring of genetic variation. Next generation sequencing (NGS) has transformed genomics by providing low-cost, high-throughput technologies for the identification of markers in plants. This review focuses on the latest applications, advances and opportunities of NGS in the discovery and characterization of MM in plants. We have addressed the involvement of NGS in the detection of different types of markers such as single nucleotide polymorphisms (SNPs), indels, simple sequence repeats (SSRs) and structural variants (SVs) and their applications in functional genomics and plant breeding. We have also demonstrated the possibility of combining NGS with modern bioinformatics techniques to accelerate the development of markers and improve crop resistance and yield.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100412"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221466282400094X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Crop development is critical to meeting the world's growing food needs, especially in light of the challenges posed by climate change and population growth. Molecular markers (MM) have become an indispensable tool in breeding programmes as they enable rapid trait selection and monitoring of genetic variation. Next generation sequencing (NGS) has transformed genomics by providing low-cost, high-throughput technologies for the identification of markers in plants. This review focuses on the latest applications, advances and opportunities of NGS in the discovery and characterization of MM in plants. We have addressed the involvement of NGS in the detection of different types of markers such as single nucleotide polymorphisms (SNPs), indels, simple sequence repeats (SSRs) and structural variants (SVs) and their applications in functional genomics and plant breeding. We have also demonstrated the possibility of combining NGS with modern bioinformatics techniques to accelerate the development of markers and improve crop resistance and yield.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.