Plant Gene最新文献

筛选
英文 中文
Phylogenetic and comparative genomics establishes origin of paralogy between homologs of AtMYB42 and AtMYB85 in last common ancestor of Brassicaceae via segmental duplication 系统发育和比较基因组学通过片段重复确定了十字花科最后共同祖先AtMYB42和AtMYB85同源物间同源关系的起源
Plant Gene Pub Date : 2023-09-01 DOI: 10.1016/j.plgene.2023.100424
Shobha Yadav, Nishu Chahar, Mukund Lal, Sandip Das
{"title":"Phylogenetic and comparative genomics establishes origin of paralogy between homologs of AtMYB42 and AtMYB85 in last common ancestor of Brassicaceae via segmental duplication","authors":"Shobha Yadav,&nbsp;Nishu Chahar,&nbsp;Mukund Lal,&nbsp;Sandip Das","doi":"10.1016/j.plgene.2023.100424","DOIUrl":"10.1016/j.plgene.2023.100424","url":null,"abstract":"<div><p>Origin and evolution of secondary cell wall is considered key to colonization of terrestrial habitat by plants. The primary component of secondary cell wall, lignin, imparts strength and rigidity and enables plants to endure negative pressure created during transpiration. Members of the <em>MYB</em> transcription family, <em>AtMYB42</em> and <em>AtMYB85,</em> play critical roles as regulators of lignin biosynthesis. Inspite of their functional significance, evolutionary history of homologs of <em>AtMYB42</em> and <em>AtMYB85</em> across land plants remains to be investigated. Our analysis revealed that homologs of <em>AtMYB42</em> and <em>AtMYB85</em> as two distinct genes are not present in any plant lineage outside Brassicaceae and only the ancestral form exists as <em>AtMYB42</em>/<em>AtMYB85</em>. Analysis of homologs of <em>AtMYB42</em> and <em>AtMYB85</em> across green plants combined with comparative genomics, selection pressure, and character-state reconstruction reveals that <em>AtMYB42</em> and <em>AtMYB85</em> are paralogous, and arose via segmental duplication, which may coincide with the α-event of WGD that occurred after the split of Brassicaceae-Caricaceae from the last common ancestor<em>.</em> Within Brassicaceae, homeologs and paralogs that arose as a result of polyploidization, and species- and lineage-specific changes could be observed. For instance, homologs of <em>AtMYB42</em> were found to be deleted from the entire <em>Brassica</em> lineage. Analysis of homeologous segments in neopolyploids (<em>B. napus, B. juncea, Camelina sativa</em>), and meso-polyploid (<em>B. rapa</em>) revealed differential degrees of gene loss and retention. In Brassicaceae, homologs of <em>AtMYB42</em> were found to be under purifying selection and of <em>AtMYB85</em> under positive selection. High sequence identity in the coding region between homologs of <em>AtMYB42</em> and <em>AtMYB85</em> is indicative of redundant roles, and the loss of homologs of <em>AtMYB42</em> in <em>Brassica</em> may be compensated by presence of <em>AtMYB85</em> homologs and homeologs. The study thus forms the basis to investigate questions on regulatory diversification owing to variation in cis-elements between the paralogs and among homeologs, and, impact of differential selection pressure vis-a-vis redundant function.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"35 ","pages":"Article 100424"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49209882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The involvement of a PIG3 homolog quinone oxidoreductase gene in maize resistance to insects and fungi demonstrated through transgenic expression in maize callus PIG3同源物醌氧化还原酶基因在玉米愈伤组织中的转基因表达表明其参与玉米对昆虫和真菌的抗性
Plant Gene Pub Date : 2023-09-01 DOI: 10.1016/j.plgene.2023.100429
Patrick F. Dowd, Eric T. Johnson
{"title":"The involvement of a PIG3 homolog quinone oxidoreductase gene in maize resistance to insects and fungi demonstrated through transgenic expression in maize callus","authors":"Patrick F. Dowd,&nbsp;Eric T. Johnson","doi":"10.1016/j.plgene.2023.100429","DOIUrl":"10.1016/j.plgene.2023.100429","url":null,"abstract":"<div><p>Insect and pathogen damage of maize inhibits sustainable production. Discovery of maize genes coding for products active against both classes of pests would significantly accelerate the rate of development of resistant varieties. A quinone oxidoreductase gene homologous to apoptosis related <em>P53 inducible gene 3</em> (<em>PIG3</em>) in vertebrates was identified as a pest resistance candidate in a quantitative trait locus region for maize ear rot resistance. The quinone oxidoreductase gene was cloned from a <em>Fusarium</em> resistant inbred of maize and expressed in maize callus. The transformed callus had some significant resistance to the maize pathogen <em>F. graminearum</em>, compared to control transformants, and was often highly resistant to two major caterpillar pests of maize. A band of enhanced reactive oxygen species (ROS) generation in the presence of relevant substrates was noted when protein extracts from the transgenic callus compared to those from control callus were separated by polyacrylamide gel electrophoresis. Thus, presence or introduction of an optimally functional form of this gene should lead to enhanced resistance of maize and other crops to major insect and fungal pests.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"35 ","pages":"Article 100429"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43453240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and characterization of microRNAs responsive to fluoride toxicity in rice (Oryza sativa L.) 水稻(Oryza sativa L.)对氟毒性反应的微小RNA的鉴定和表征
Plant Gene Pub Date : 2023-09-01 DOI: 10.1016/j.plgene.2023.100426
Tamarapalli Sravya Sruti, Sasmita Mohanty, Raj Kumar Joshi
{"title":"Identification and characterization of microRNAs responsive to fluoride toxicity in rice (Oryza sativa L.)","authors":"Tamarapalli Sravya Sruti,&nbsp;Sasmita Mohanty,&nbsp;Raj Kumar Joshi","doi":"10.1016/j.plgene.2023.100426","DOIUrl":"10.1016/j.plgene.2023.100426","url":null,"abstract":"<div><p>MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important modulators of gene expression related to several stress responses in plants. While several miRNAs have been implicated in the modulation of multiple abiotic and biotic stresses in rice, there role in response to fluoride stress is yet to be explored. In the present study, fourteen conserved rice miRNAs with proven role in multiple stress response were analysed to identify differentially expressed miRNAs in response to fluoride toxicity in two popular rice varieties- Gobindobhog (GB; F-tolerant) and IR64 (F-sensitive). Stem-Loop RT-PCR revealed that miR156, miR166, and miR171 were significantly induced in GB seedlings post treatment with fluoride. Likewise, miR160, miR319, miR396, and miR444 were prominently induced in the fluoride-sensitive IR64. Additionally, miR393 was significantly induced post-treatment with fluoride stress in both the genotypes exhibiting a basal response to fluoride toxicity. Further, we computationally predicted the miRNA targets many of which encoded transcription factors associated with stress response mechanism. The miRNA targets were experimentally validated using ligation mediated 5′ rapid amplification of cDNA ends analysis. Quantitative RT-PCR analysis of nine selected miRNA target genes (Os11g30370, Os06g47150, Os06g03670, Os04g48290, Os02g44360, Os08g34380, Os05g05800, Os04g57050, Os04g51350) revealed simultaneous reciprocal changes in the expression patterns of the miRNAs and the corresponding target genes suggesting their involvement in the modulation of fluoride stress response in rice. Analysis of proximal promoter sequences of the F-responsive miRNAs revealed that these miRNAs possess stress-responsive, elicitor and hormonal related motifs. Overall, our results suggest that multiple conserved miRNAs are involved in fluoride toxicity and a miRNA-mediated regulation of signal response is critical for rice response to fluoride stress.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"35 ","pages":"Article 100426"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45752757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization of Melanoxylon brauna (Fabaceae) matrices established in a multiclonal minigarden 在多克隆小型花园中建立的黑色素瘤(Fabacee)基质的分子表征
Plant Gene Pub Date : 2023-09-01 DOI: 10.1016/j.plgene.2023.100428
Elbya Leão Gibson , Elzimar de Oliveira Gonçalves , Adelson Lemes da Silva Júnior , Aline Ramalho dos Santos , Emanuel França Araújo , Fábio Demolinari de Miranda , José Eduardo Macedo Pezzopane
{"title":"Molecular characterization of Melanoxylon brauna (Fabaceae) matrices established in a multiclonal minigarden","authors":"Elbya Leão Gibson ,&nbsp;Elzimar de Oliveira Gonçalves ,&nbsp;Adelson Lemes da Silva Júnior ,&nbsp;Aline Ramalho dos Santos ,&nbsp;Emanuel França Araújo ,&nbsp;Fábio Demolinari de Miranda ,&nbsp;José Eduardo Macedo Pezzopane","doi":"10.1016/j.plgene.2023.100428","DOIUrl":"10.1016/j.plgene.2023.100428","url":null,"abstract":"<div><p><em>Melanoxylon brauna</em> is a tree species native to the Atlantic Forest that has great potential for reforestation and urban afforestation. Due to its exploitation, germination difficulties, and absence in afforestation projects, it is currently endangered. Therefore, this study aims to evaluate the diversity and genetic structure in <em>M. brauna</em> matrixes established in multiclonal minigardens through inter simple sequence repeat (ISSR) markers. Plant material of 59 individuals arranged in the multiclonal minigarden was collected for the analyses. Eleven ISSR primers were selected, which generated 183 fragments, among which 117 were polymorphic (63,93%). The efficiency of the markers was confirmed through the polymorphism information content (PIC) which resulted in an average value of 0.36, characterizing them as moderately informative. High genetic diversity was found based on the values of the number of observed alleles (A<sub>O</sub> = 2.00) and effective alleles (A<sub>E</sub> = 1.63), Nei's diversity index (<em>H*</em> = 0.36), Shannon index (<em>I*</em> = 0.54), and the formation of distinct groups by cluster analysis. Despite the alleles being well distributed among individuals, revealing high genetic diversity, Bayesian inference revealed only one genetic group (K = 1). The ISSR markers proved to be efficient in the characterization of the genetic diversity in <em>M. brauna</em> individuals, and the population of the multiclonal minigarden can be used as a source of propagules for seedling production. However, actions such as the expansion of the genetic diversity through the introduction of plants from different origins can increase the adaptive potential of the minigarden and future established populations.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"35 ","pages":"Article 100428"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45945376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pvSPS4 is involved in regulation of root sugar balance in common bean under salt stress pvSPS4参与盐胁迫下普通豆根糖平衡的调控
Plant Gene Pub Date : 2023-09-01 DOI: 10.1016/j.plgene.2023.100427
Harun Niron , Müge Türet
{"title":"pvSPS4 is involved in regulation of root sugar balance in common bean under salt stress","authors":"Harun Niron ,&nbsp;Müge Türet","doi":"10.1016/j.plgene.2023.100427","DOIUrl":"10.1016/j.plgene.2023.100427","url":null,"abstract":"<div><p>Salinity is a stress factor that decreases global agricultural yield. Crops such as rice, tomato, potato, and legumes are susceptible to salt, thus this problem requires urgent attention. Disruption of carbohydrate metabolism can have negative effects on stress tolerance. Sucrose phosphate synthase (SPS) enzymes operate in a key regulatory step in sucrose synthesis. Therefore, they have a significant role in the regulation of sugar metabolism. This study focused on the function of the SPS homolog -<em>pvSPS4</em>- in the roots of legume crop common bean under salinity stress. We previously showed that <em>pvSPS4</em> expression is root-specific and is upregulated under salt stress in a salt-tolerant common bean genotype. This upregulation was accompanied by an accumulation of sugars in the roots. In the current study, using the same genotype, we generated composite common bean plants with wild-type shoot and <em>pvSPS4</em> knock-down roots. Composite plants exhibited a more sensitive phenotype under salt stress compared to control and mock plants. <em>pvSPS4</em> knock-down disturbed the root glucose/sucrose ratio and balance of Ca<sup>+2</sup>, Mg<sup>+2</sup>, and K<sup>+</sup> in both root and leaves which resulted in a reduction in photosynthetic pigments together with osmoregulation and antioxidant capability. Our results imply that <em>pvSPS4</em> is an important gene for carbohydrate balance regulation under salt-stress in the common bean root tissues and sets an example for the significance of mainly disregarded roles of <em>SPS</em> genes in sink tissues.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"35 ","pages":"Article 100427"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41396157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the potential of XP-GWAS in Eucalyptus: Leaf heteroblasty as a case study 评价XP-GWAS在桉树中的潜力:以叶片异质发育为例
Plant Gene Pub Date : 2023-08-22 DOI: 10.1016/j.plgene.2023.100430
Facundo M. Giorello , Joaquina Farias , Patricia Basile , Gustavo Balmelli , Cecilia Corina Da Silva
{"title":"Evaluating the potential of XP-GWAS in Eucalyptus: Leaf heteroblasty as a case study","authors":"Facundo M. Giorello ,&nbsp;Joaquina Farias ,&nbsp;Patricia Basile ,&nbsp;Gustavo Balmelli ,&nbsp;Cecilia Corina Da Silva","doi":"10.1016/j.plgene.2023.100430","DOIUrl":"10.1016/j.plgene.2023.100430","url":null,"abstract":"<div><p><em>Eucalyptus</em> is one of the mainstays of the forest industry, contributing high-quality raw materials for pulp, paper, wood, and energy production. The typical approaches to reveal the genetic basis of important traits include classical Quantitative Trait Locus (QTL) mapping and Genome-Wide Association Studies (GWAS) approaches, but these are typically expensive and time-consuming. Here we evaluate the potential of Extreme-Phenotype GWAS (XP-GWAS) to identify candidate genes underlying a quantitative trait in <em>Eucalyptus,</em> using the timing of leaf heteroblasty as a case study. XP-GWAS involves genotyping pools of individuals grouped by extreme and opposed phenotypes from a population or a diversity panel and studying their allele frequency. Using a previous phenotyped trial of <em>E. globulus</em>, we sequenced pools of 50 individuals that notably differ in the onset of adult foliage. Since the genetic basis of heteroblasty is well understood, we first searched for previously identified genes. Secondly, we searched for new candidate genes and also evaluated the copy number variation (CNVs) that may be involved in this process. We found marginally significant SNPs associated with previously described microRNAs, and interesting new non-coding RNAs. Disease resistance genes were also uncovered, probably as a consequence of indirectly selecting resistant trees, although a possible interaction between resistance and heteroblasty cannot be disregarded either. Our work shows the utility and limitations of XP-GWAS analysis to explore the genetic basis of <em>Eucalyptus</em>.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"36 ","pages":"Article 100430"},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44784866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic fidelity assessment of wild and tissue cultured regenerants of a threatened orchid, Cymbidium aloifolium using molecular markers 利用分子标记对濒危兰花海兰野生和组织培养再生植株的遗传保真度评估
Plant Gene Pub Date : 2023-06-01 DOI: 10.1016/j.plgene.2023.100418
Shreeti Pradhan , Yagya Prasad Paudel , Wensheng Qin , Bijaya Pant
{"title":"Genetic fidelity assessment of wild and tissue cultured regenerants of a threatened orchid, Cymbidium aloifolium using molecular markers","authors":"Shreeti Pradhan ,&nbsp;Yagya Prasad Paudel ,&nbsp;Wensheng Qin ,&nbsp;Bijaya Pant","doi":"10.1016/j.plgene.2023.100418","DOIUrl":"10.1016/j.plgene.2023.100418","url":null,"abstract":"<div><p>Molecular markers play an effective role in estimating the genetic similarity, variation, diversity, and population structure of different plants. Various factors associated with <em>in vitro</em> culture conditions may cause genetic variation in tissue cultured regenerants. The main goal of the present study was to determine the genetic uniformity of plantlets regenerated through <em>in vitro</em> culture of protocorms, shoot tips, and sodium alginate coated artificial seeds of <em>Cymbidium aloifolium</em> (L.) Sw. and its non-tissue cultured source mother plant using molecular markers such as Random Amplified Polymorphic Deoxyribonucleic acid (RAPD) and Inter Simple Sequence Repeats (ISSR). Ten RAPD and five ISSR primers were used to amplify the genomic DNA isolated from the <em>in vivo</em> plant and randomly selected micropropagated plants. Nine out of ten RAPD primers amplified a total of 256 loci while five ISSR primers amplified a total of 99 loci. The combined data of RAPD and ISSR markers showed low polymorphism. Among the tested plants, dendrograms constructed through UPGMA analysis of RAPD and ISSR markers revealed high genetic similarity between the mother plant and <em>in vitro</em> cultured regenerants. Among the different <em>in vitro</em> regenerants, protocorm-derived plants showed 91% genetic homogeneity to that of the mother plant. Thus, both molecular markers proved to be equally efficient for genetic fidelity studies in <em>C. aloifolium</em>. Hence, this research successfully assessed the genetic fidelity of <em>in vitro</em> cultured plants which could be useful in reintroducing true-to-type plants through plant tissue culture techniques.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"34 ","pages":"Article 100418"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43213287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MicroRNAs for understanding and improving agronomic traits in oilseed Brassicas 微RNA技术在了解和改良油菜农艺性状中的应用
Plant Gene Pub Date : 2023-06-01 DOI: 10.1016/j.plgene.2023.100422
Astuti Rani , Shubhangi Singh , Pinky Yadav , Heena Arora , Inderjeet Kaur , Namrata Dhaka
{"title":"MicroRNAs for understanding and improving agronomic traits in oilseed Brassicas","authors":"Astuti Rani ,&nbsp;Shubhangi Singh ,&nbsp;Pinky Yadav ,&nbsp;Heena Arora ,&nbsp;Inderjeet Kaur ,&nbsp;Namrata Dhaka","doi":"10.1016/j.plgene.2023.100422","DOIUrl":"10.1016/j.plgene.2023.100422","url":null,"abstract":"<div><p>Oilseed Brassicas are economically important crops, with <em>Brassica napus, B. juncea</em>, and <em>B. rapa</em> constituting prominent oilseed resources in the Indian subcontinent and across the world. Improving of oil yield, quality, and resistance to abiotic and biotic stresses in oilseed Brassicas warrants concerted efforts. Owing to quantitative nature, the genetic basis of these traits is complex, and can be significantly improved by incorporating the knowledge of precise genetic regulation of these traits. MicroRNAs (miRNAs) can act as attractive targets for crop improvement as they fine-tune gene expression by targeting genes negatively. Here we highlight the emerging evidences of miRNA-mediated regulation of genes controlling several development traits and stress-related traits in oilseed Brassicas. At least 13 miRNAs have so far been well elucidated in oilseed Brassicas using miRNA overexpression, mutation and target mimic approaches, in regulation of different agronomic traits. Further, at least 29 high-throughput small RNA profiling studies have proffered crucial miRNA-target pair candidates for further investigation. This knowledge so far remains unutilized in designing crop improvement programs in oilseed Brassicas. However, there are sufficient evidences to suggest that miRNAs as well as their target genes can be successfully employed in breeding as well as genome editing-mediated engineering of oilseed crops for improving their agricultural traits.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"34 ","pages":"Article 100422"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41321373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Complete genome of the kikuyu grass chloroplast (Cenchrus clandestinus) and comparative analysis within the subfamily Panicoideae 菊芋叶绿体(Cenchrus clandestinus)的全基因组及其在圆锥总科中的比较分析
Plant Gene Pub Date : 2023-06-01 DOI: 10.1016/j.plgene.2023.100414
Juliana Arango , Juan F. Alzate , Albeiro López , Edna J. Márquez , José J. Echeverri
{"title":"Complete genome of the kikuyu grass chloroplast (Cenchrus clandestinus) and comparative analysis within the subfamily Panicoideae","authors":"Juliana Arango ,&nbsp;Juan F. Alzate ,&nbsp;Albeiro López ,&nbsp;Edna J. Márquez ,&nbsp;José J. Echeverri","doi":"10.1016/j.plgene.2023.100414","DOIUrl":"10.1016/j.plgene.2023.100414","url":null,"abstract":"<div><p>Within the subfamily Panicoideae<em>,</em> the <em>Cenchrus</em> genus which is distributed in both tropical and subtropical regions worldwide—is economically important in terms of their production levels. For milkshed areas, one of the most important pastures is kikuyu (<em>Cenchrus clandestinus</em>), which represents the basic forage used for feeding in a number of countries. In this study, the kikuyu grass (<em>Cenchrus clandestinus</em>) plastome was sequenced, assembled, and annotated to broaden the information and the set of available genomic data. One whole-genome shotgun (WGS) library was constructed using Nextera preparation kits and was sequenced in an Illumina MiSeq platform. In addition, the genomic organization and arrangement of genes as well as their phylogenetic relationship with other species of the family Poaceae were compared using 81 protein-coding genes. The present study characterized and annotated the complete plastome of kikuyu grass, <em>Cenchrus clandestinus</em>, as an informative contribution for future studies potentially investigating the evolution of plant genomes and, specifically, aiming to elucidate the phylogenetic relationships within the family Poaceae,Overall, the results indicate that the structure and organization are conserved compared with other references within the family Poaceae. Phylogenetic relationships confirmed the position of kikuyu within the <em>Cenchrus</em> genus, and they are consistent with previous results obtained for other species of the subfamily Panicoideae<em>.</em></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"34 ","pages":"Article 100414"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49545036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide comparative analysis of Glycolate oxidase (GOX) gene family in plants 植物乙醇酸氧化酶(GOX)基因家族全基因组比较分析
Plant Gene Pub Date : 2023-06-01 DOI: 10.1016/j.plgene.2023.100407
Érica Monik Silva Roque, Felipe de Castro Teixeira, Alex Martins de Aguiar, Victor Breno Faustino Bezerra, Ana Carolina Moreira da Costa, Sâmia Alves Silva, Ana Luiza Sobral Paiva, Humberto Henrique de Carvalho, Murilo Siqueira Alves
{"title":"Genome-wide comparative analysis of Glycolate oxidase (GOX) gene family in plants","authors":"Érica Monik Silva Roque,&nbsp;Felipe de Castro Teixeira,&nbsp;Alex Martins de Aguiar,&nbsp;Victor Breno Faustino Bezerra,&nbsp;Ana Carolina Moreira da Costa,&nbsp;Sâmia Alves Silva,&nbsp;Ana Luiza Sobral Paiva,&nbsp;Humberto Henrique de Carvalho,&nbsp;Murilo Siqueira Alves","doi":"10.1016/j.plgene.2023.100407","DOIUrl":"10.1016/j.plgene.2023.100407","url":null,"abstract":"<div><p>Glycolate Oxidase (GOX) is a key enzyme in photorespiration, a complex metabolic pathway in plants that affects photosynthesis efficiency and one of its most prominent products is hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Photosynthetic pathways and H<sub>2</sub>O<sub>2</sub> production can drastically differ between C3 and C4 plants which have distinctions in the photorespiration machinery. Such contrasts critically impact physiological processes in plants, such as development and stress responses. However, few studies bring light to evolutionary and structural aspects of the photorespiration components, and comparative analyses of gene families related to photorespiration in C3 and C4 plants are lacking. In the present study, we present the first genome-wide comparative analysis of the <em>GOX</em> gene family in plants, comparing relevant evolutionary and structural aspects of distinct <em>GOX</em> orthologs in plant families. The evolutionary relationships, gene structure, conserved motifs, promoter <em>cis</em>-element prediction, chromosome location, and interspecific collinearity were analyzed in order to gain a better understanding of the <em>GOX</em> gene family in plants. Family-dependent evolutionary and structural divergence were observed among distinct <em>GOX</em> genes, with higher gene conservation among <em>Fabaceae</em> family members. High sequence divergence found among <em>Fabaceae</em> and <em>Poaceae GOX</em> orthologs may impact functional divergence among these gene families. This comparative study provides a comprehensive picture of evolutionary and structural aspects of the <em>GOX</em> gene family in plants, as well as emphasizes the involvement of <em>GOX</em> orthologs in plant stress responses.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"34 ","pages":"Article 100407"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47168283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信