塞纳的进化动力学:从质体进化和系统基因组学的角度

IF 2.2 Q3 GENETICS & HEREDITY
Samaila Samaila Yaradua , Faten Zubair Filimban
{"title":"塞纳的进化动力学:从质体进化和系统基因组学的角度","authors":"Samaila Samaila Yaradua ,&nbsp;Faten Zubair Filimban","doi":"10.1016/j.plgene.2024.100486","DOIUrl":null,"url":null,"abstract":"<div><div>Genus <em>Senna</em> (Caesalpinioideae, <em>Fabaceae</em>) comprises about 350 species mainly distributed in the American continent. Despite the sequencing and assembly of the chloroplast genome of some of the species in the genus, the chloroplast genome sequence and structural variation have not been evaluated, and the evolutionary relationship within the genus is still lacking. In this study, we sampled different species of the genus representing the six sections to examine the variation in the genome and phylogenetic relationships. The chloroplast genome of <em>Senna</em> has a typical quadripartite structure with a size ranging from 148, 437 bp to 162, 426 bp. There are gene losses in some species of the genus, the earliest diverged species lost 9 protein-coding genes which were recovered in the latter diverged lineages. No inversion was detected in the genome but there is a significant level of sequence variation, gene number, and genome size, that provide valuable information on the evolution of the genus. The following regions are the most variable regions in the genus and can be used as DNA barcodes for the identification of the species: <em>Psba, ndhH, trnT-trnL</em>, <em>trnG-trnR</em>, <em>rps18</em>-<em>rpl20</em>, and <em>trnI-rrn16</em>. The phylogenomic analysis revealed a well-resolved phylogenetic relationship of the genus, supporting the monophyly of the genus. The phylogenetic tree reported the phylogenetic positions and sister relationships of some species for the first time. Our result revealed that section Chameafistula is paraphyletic and calls for the revision of the infrageneric classification of the genus.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"41 ","pages":"Article 100486"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary dynamics of Senna: Perspectives from plastome evolution and phylogenomics\",\"authors\":\"Samaila Samaila Yaradua ,&nbsp;Faten Zubair Filimban\",\"doi\":\"10.1016/j.plgene.2024.100486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Genus <em>Senna</em> (Caesalpinioideae, <em>Fabaceae</em>) comprises about 350 species mainly distributed in the American continent. Despite the sequencing and assembly of the chloroplast genome of some of the species in the genus, the chloroplast genome sequence and structural variation have not been evaluated, and the evolutionary relationship within the genus is still lacking. In this study, we sampled different species of the genus representing the six sections to examine the variation in the genome and phylogenetic relationships. The chloroplast genome of <em>Senna</em> has a typical quadripartite structure with a size ranging from 148, 437 bp to 162, 426 bp. There are gene losses in some species of the genus, the earliest diverged species lost 9 protein-coding genes which were recovered in the latter diverged lineages. No inversion was detected in the genome but there is a significant level of sequence variation, gene number, and genome size, that provide valuable information on the evolution of the genus. The following regions are the most variable regions in the genus and can be used as DNA barcodes for the identification of the species: <em>Psba, ndhH, trnT-trnL</em>, <em>trnG-trnR</em>, <em>rps18</em>-<em>rpl20</em>, and <em>trnI-rrn16</em>. The phylogenomic analysis revealed a well-resolved phylogenetic relationship of the genus, supporting the monophyly of the genus. The phylogenetic tree reported the phylogenetic positions and sister relationships of some species for the first time. Our result revealed that section Chameafistula is paraphyletic and calls for the revision of the infrageneric classification of the genus.</div></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"41 \",\"pages\":\"Article 100486\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407324000416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

番泻属(番泻科,番泻科)约350种,主要分布于美洲大陆。尽管对属中部分物种的叶绿体基因组进行了测序和组装,但叶绿体基因组序列和结构变异尚未得到评价,属内的进化关系仍然缺乏。在这项研究中,我们取样了代表六个部分的属的不同物种来研究基因组的变异和系统发育关系。塞纳叶绿体基因组具有典型的四分体结构,大小在148,437 ~ 162,426 bp之间。部分种存在基因丢失现象,最早分化的种丢失了9个蛋白质编码基因,这些基因在后期分化谱系中得到了恢复。在基因组中没有检测到反转,但有显著水平的序列变异,基因数量和基因组大小,为属的进化提供了有价值的信息。以下区域是属中变异最大的区域,可作为物种鉴定的DNA条形码:Psba、ndhH、trnT-trnL、trnt - trnr、rps18-rpl20和trnI-rrn16。系统发育分析显示,该属的系统发育关系得到了很好的解决,支持该属的单系性。系统发育树首次报道了部分物种的系统发育位置和亲缘关系。我们的研究结果表明,Chameafistula属是副属,并要求修订该属的下属分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary dynamics of Senna: Perspectives from plastome evolution and phylogenomics
Genus Senna (Caesalpinioideae, Fabaceae) comprises about 350 species mainly distributed in the American continent. Despite the sequencing and assembly of the chloroplast genome of some of the species in the genus, the chloroplast genome sequence and structural variation have not been evaluated, and the evolutionary relationship within the genus is still lacking. In this study, we sampled different species of the genus representing the six sections to examine the variation in the genome and phylogenetic relationships. The chloroplast genome of Senna has a typical quadripartite structure with a size ranging from 148, 437 bp to 162, 426 bp. There are gene losses in some species of the genus, the earliest diverged species lost 9 protein-coding genes which were recovered in the latter diverged lineages. No inversion was detected in the genome but there is a significant level of sequence variation, gene number, and genome size, that provide valuable information on the evolution of the genus. The following regions are the most variable regions in the genus and can be used as DNA barcodes for the identification of the species: Psba, ndhH, trnT-trnL, trnG-trnR, rps18-rpl20, and trnI-rrn16. The phylogenomic analysis revealed a well-resolved phylogenetic relationship of the genus, supporting the monophyly of the genus. The phylogenetic tree reported the phylogenetic positions and sister relationships of some species for the first time. Our result revealed that section Chameafistula is paraphyletic and calls for the revision of the infrageneric classification of the genus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信