双色高粱过氧化氢酶基因家族的鉴定、表征及表达谱分析。

IF 2.2 Q3 GENETICS & HEREDITY
Md Rihan Kabir Shuvo, Asifur Rob Bhuya, Abdullah Al Nahid, Ajit Ghosh
{"title":"双色高粱过氧化氢酶基因家族的鉴定、表征及表达谱分析。","authors":"Md Rihan Kabir Shuvo,&nbsp;Asifur Rob Bhuya,&nbsp;Abdullah Al Nahid,&nbsp;Ajit Ghosh","doi":"10.1016/j.plgene.2024.100482","DOIUrl":null,"url":null,"abstract":"<div><div>Catalase (CAT) controls plant growth and development primarily by scavenging H<sub>2</sub>O<sub>2</sub> from reactive oxygen species (ROS). As an antioxidant enzyme, catalase reduces ROS by converting H<sub>2</sub>O<sub>2</sub> into H<sub>2</sub>O to shield cells from oxidative stress-induced apoptosis. The <em>CAT</em> gene family has been identified in many plants except <em>Sorghum bicolor</em>. In this study, five SbCAT proteins encoded by three genes were identified in the genome of <em>S. bicolor</em>. Three conserved amino acids, one active catalytic site, one heme-ligand signature, and three peroxisomal targeting signal 1 (PTS1) sequences were shared by all SbCAT proteins. The presence of different cis-regulatory elements indicated that <em>SbCAT</em> genes might be involved in the developmental and stress adaptation pathways. <em>SbCAT</em> genes showed variable expression in various tissues and responses to hormonal, abiotic, and biotic stresses. The findings from this study may aid in future research on the functions of <em>SbCAT</em> genes in stress modulation and crop improvement.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"41 ","pages":"Article 100482"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification, characterization, and expression profiling of catalase gene family in Sorghum bicolor L.\",\"authors\":\"Md Rihan Kabir Shuvo,&nbsp;Asifur Rob Bhuya,&nbsp;Abdullah Al Nahid,&nbsp;Ajit Ghosh\",\"doi\":\"10.1016/j.plgene.2024.100482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Catalase (CAT) controls plant growth and development primarily by scavenging H<sub>2</sub>O<sub>2</sub> from reactive oxygen species (ROS). As an antioxidant enzyme, catalase reduces ROS by converting H<sub>2</sub>O<sub>2</sub> into H<sub>2</sub>O to shield cells from oxidative stress-induced apoptosis. The <em>CAT</em> gene family has been identified in many plants except <em>Sorghum bicolor</em>. In this study, five SbCAT proteins encoded by three genes were identified in the genome of <em>S. bicolor</em>. Three conserved amino acids, one active catalytic site, one heme-ligand signature, and three peroxisomal targeting signal 1 (PTS1) sequences were shared by all SbCAT proteins. The presence of different cis-regulatory elements indicated that <em>SbCAT</em> genes might be involved in the developmental and stress adaptation pathways. <em>SbCAT</em> genes showed variable expression in various tissues and responses to hormonal, abiotic, and biotic stresses. The findings from this study may aid in future research on the functions of <em>SbCAT</em> genes in stress modulation and crop improvement.</div></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"41 \",\"pages\":\"Article 100482\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407324000374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

过氧化氢酶(CAT)主要通过清除活性氧(ROS)中的H2O2来控制植物的生长发育。过氧化氢酶作为一种抗氧化酶,通过将H2O2转化为H2O来减少ROS,从而保护细胞免受氧化应激诱导的凋亡。除高粱外,在许多植物中都发现了CAT基因家族。本研究在双色葡萄基因组中鉴定了3个基因编码的5个SbCAT蛋白。所有SbCAT蛋白共有3个保守氨基酸、1个活性催化位点、1个血红素配体特征和3个过氧化物酶体靶向信号1 (PTS1)序列。不同顺式调控元件的存在表明SbCAT基因可能参与了发育和胁迫适应途径。SbCAT基因在不同组织中表现出不同的表达,并对激素、非生物和生物胁迫做出反应。本研究结果为进一步研究SbCAT基因在逆境调节和作物改良中的作用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification, characterization, and expression profiling of catalase gene family in Sorghum bicolor L.
Catalase (CAT) controls plant growth and development primarily by scavenging H2O2 from reactive oxygen species (ROS). As an antioxidant enzyme, catalase reduces ROS by converting H2O2 into H2O to shield cells from oxidative stress-induced apoptosis. The CAT gene family has been identified in many plants except Sorghum bicolor. In this study, five SbCAT proteins encoded by three genes were identified in the genome of S. bicolor. Three conserved amino acids, one active catalytic site, one heme-ligand signature, and three peroxisomal targeting signal 1 (PTS1) sequences were shared by all SbCAT proteins. The presence of different cis-regulatory elements indicated that SbCAT genes might be involved in the developmental and stress adaptation pathways. SbCAT genes showed variable expression in various tissues and responses to hormonal, abiotic, and biotic stresses. The findings from this study may aid in future research on the functions of SbCAT genes in stress modulation and crop improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信