Genome-wide analysis of CNGC gene family in Brassica juncea (L.) Czern reveals key targets for stress resistance and crop improvement

IF 2.2 Q3 GENETICS & HEREDITY
Akram Ali Baloch , Kaleem U. Kakar , Sumera Rais , Zarqa Nawaz , Abdulwareth A. Almoneafy , Agha Muhammad Raza , Samiullah Khan , Raqeeb Ullah
{"title":"Genome-wide analysis of CNGC gene family in Brassica juncea (L.) Czern reveals key targets for stress resistance and crop improvement","authors":"Akram Ali Baloch ,&nbsp;Kaleem U. Kakar ,&nbsp;Sumera Rais ,&nbsp;Zarqa Nawaz ,&nbsp;Abdulwareth A. Almoneafy ,&nbsp;Agha Muhammad Raza ,&nbsp;Samiullah Khan ,&nbsp;Raqeeb Ullah","doi":"10.1016/j.plgene.2024.100487","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic nucleotide-gated ion channels (CNGCs) are important in cellular signaling, enabling ion passage, mainly calcium, across cell membranes in animals and plants. In plants, CNGCs are involved in cation transport, influencing growth, pathogen defense, and stress resistance. The <em>CNGC</em> gene family in <em>Brassica juncea</em> (L.) Czern (<em>BjCNGCs</em>) has not been well studied previously. We conducted a wide-ranging genome-wide analysis of <em>BjCNGCs</em> using available genomic data, covering genomic characterization, evolution, synteny analysis, gene mapping, structure, conserved motifs, cis-acting elements, potential protein association networks, post-translational modifications, and regulation. RT-qPCR assays were performed to investigate the expression patterns of selected <em>BjCNGC</em> genes in response to growth and stress. Our study identified 39 <em>BjCNGC</em> genes predicted to be present on fourteen chromosomes. Almost 49 % of these genes are positioned in conserved syntenic blocks of LF, MF-I, and MF-II sub-genomes, with a gene deletion (<em>Bra024083</em> and <em>BniB002576</em>) from the MF-I block during intraspecific hybridization. The remaining genes evolved through segmental duplications 0.22 to 0.67 million years ago under purifying selection. Phylogenetic analysis classified the BjCNGC family into four groups, with groups III and IV further subdivided into A and B. We recognized 17 miRNA target sites, six of which are involved in stress resistance, coupled with phosphorylation for regulatory control. <em>In-silico</em> methods revealed gene structures, conserved motifs, and protein interaction networks. The study identified several <em>CNGCs</em> in <em>Brassica juncea</em> (L.) Czern showed significant responses to various stresses. Remarkably, certain <em>CNGCs</em> showed increased responses to black rot and TuMV, while others were more reactive to salinity and drought conditions. These findings suggest that targeting specific <em>CNGCs</em> through future genomic selection and breeding efforts could enhance crop production by introducing desirable stress-resistant traits in <em>Brassica</em>.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"41 ","pages":"Article 100487"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic nucleotide-gated ion channels (CNGCs) are important in cellular signaling, enabling ion passage, mainly calcium, across cell membranes in animals and plants. In plants, CNGCs are involved in cation transport, influencing growth, pathogen defense, and stress resistance. The CNGC gene family in Brassica juncea (L.) Czern (BjCNGCs) has not been well studied previously. We conducted a wide-ranging genome-wide analysis of BjCNGCs using available genomic data, covering genomic characterization, evolution, synteny analysis, gene mapping, structure, conserved motifs, cis-acting elements, potential protein association networks, post-translational modifications, and regulation. RT-qPCR assays were performed to investigate the expression patterns of selected BjCNGC genes in response to growth and stress. Our study identified 39 BjCNGC genes predicted to be present on fourteen chromosomes. Almost 49 % of these genes are positioned in conserved syntenic blocks of LF, MF-I, and MF-II sub-genomes, with a gene deletion (Bra024083 and BniB002576) from the MF-I block during intraspecific hybridization. The remaining genes evolved through segmental duplications 0.22 to 0.67 million years ago under purifying selection. Phylogenetic analysis classified the BjCNGC family into four groups, with groups III and IV further subdivided into A and B. We recognized 17 miRNA target sites, six of which are involved in stress resistance, coupled with phosphorylation for regulatory control. In-silico methods revealed gene structures, conserved motifs, and protein interaction networks. The study identified several CNGCs in Brassica juncea (L.) Czern showed significant responses to various stresses. Remarkably, certain CNGCs showed increased responses to black rot and TuMV, while others were more reactive to salinity and drought conditions. These findings suggest that targeting specific CNGCs through future genomic selection and breeding efforts could enhance crop production by introducing desirable stress-resistant traits in Brassica.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信