Discovery of potential haplotypes associated with varying levels of vicine content due to the InDel1.4 and a coding-SNP in the VC1 gene in faba bean (Vicia faba L.)
{"title":"Discovery of potential haplotypes associated with varying levels of vicine content due to the InDel1.4 and a coding-SNP in the VC1 gene in faba bean (Vicia faba L.)","authors":"Sadhan Debnath , Wricha Tyagi , Mayank Rai , Kuldeep Singh , Sujan Majumder , Naveen Duhan , Ng Tombisana Meetei","doi":"10.1016/j.plgene.2024.100481","DOIUrl":null,"url":null,"abstract":"<div><div>Faba bean (<em>Vicia faba</em> L.) is a popular legume due to its nutritional, medicinal and environmental benefits. But vicine and convicine (VC) remain as the main threats for “favism” in individuals with genetic deficiency of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme. <em>Re</em>-sequencing-based allele mining involving allele-specific Tetra-ARMS PCR has revealed a 92 bp InDel (Insertion-Deletion), designated as “InDel1.4” in the intron-4 of <em>VC1</em> gene and a coding-SNP (T/C) at position +1588 in the exon-5. Consequently, three distinct haplotypes (Hap-1, Hap-2 and Hap-3) were identified based on the size of the intron-4 and the allelic status of the SNP in exon-5. LC-MS/MS analysis confirms that the vicine concentration varied between 3.489 and 10.025 g/kg in the entire collection of germplasm. A strong correlation (<em>r</em> = 0.84**) was observed between haplotypes and variation in vicine concentration. Translation of the sequenced fragments revealed that, the coding-SNP doesn't not change the amino acid composition of the VC1 protein. Therefore, the coding-SNP was found to be a synonymous SNP. As the InDel1.4 was located within few hundred base pairs away from the previously reported “AT insertional-mutation”, which was responsible for very low or near-zero VC faba bean, and also shows correlation with vicine content, the InDel could be utilized for a simple, reliable and cost-effective molecular marker assisted selection and crop improvement for developing faba beans with reduced VC. The Hap-1 and Hap-2 have tremendous potential to be utilized in haplotype-based breeding for faba bean improvement to combat favism.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"41 ","pages":"Article 100481"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Faba bean (Vicia faba L.) is a popular legume due to its nutritional, medicinal and environmental benefits. But vicine and convicine (VC) remain as the main threats for “favism” in individuals with genetic deficiency of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme. Re-sequencing-based allele mining involving allele-specific Tetra-ARMS PCR has revealed a 92 bp InDel (Insertion-Deletion), designated as “InDel1.4” in the intron-4 of VC1 gene and a coding-SNP (T/C) at position +1588 in the exon-5. Consequently, three distinct haplotypes (Hap-1, Hap-2 and Hap-3) were identified based on the size of the intron-4 and the allelic status of the SNP in exon-5. LC-MS/MS analysis confirms that the vicine concentration varied between 3.489 and 10.025 g/kg in the entire collection of germplasm. A strong correlation (r = 0.84**) was observed between haplotypes and variation in vicine concentration. Translation of the sequenced fragments revealed that, the coding-SNP doesn't not change the amino acid composition of the VC1 protein. Therefore, the coding-SNP was found to be a synonymous SNP. As the InDel1.4 was located within few hundred base pairs away from the previously reported “AT insertional-mutation”, which was responsible for very low or near-zero VC faba bean, and also shows correlation with vicine content, the InDel could be utilized for a simple, reliable and cost-effective molecular marker assisted selection and crop improvement for developing faba beans with reduced VC. The Hap-1 and Hap-2 have tremendous potential to be utilized in haplotype-based breeding for faba bean improvement to combat favism.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.