Discovery of potential haplotypes associated with varying levels of vicine content due to the InDel1.4 and a coding-SNP in the VC1 gene in faba bean (Vicia faba L.)

IF 2.2 Q3 GENETICS & HEREDITY
Sadhan Debnath , Wricha Tyagi , Mayank Rai , Kuldeep Singh , Sujan Majumder , Naveen Duhan , Ng Tombisana Meetei
{"title":"Discovery of potential haplotypes associated with varying levels of vicine content due to the InDel1.4 and a coding-SNP in the VC1 gene in faba bean (Vicia faba L.)","authors":"Sadhan Debnath ,&nbsp;Wricha Tyagi ,&nbsp;Mayank Rai ,&nbsp;Kuldeep Singh ,&nbsp;Sujan Majumder ,&nbsp;Naveen Duhan ,&nbsp;Ng Tombisana Meetei","doi":"10.1016/j.plgene.2024.100481","DOIUrl":null,"url":null,"abstract":"<div><div>Faba bean (<em>Vicia faba</em> L.) is a popular legume due to its nutritional, medicinal and environmental benefits. But vicine and convicine (VC) remain as the main threats for “favism” in individuals with genetic deficiency of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme. <em>Re</em>-sequencing-based allele mining involving allele-specific Tetra-ARMS PCR has revealed a 92 bp InDel (Insertion-Deletion), designated as “InDel1.4” in the intron-4 of <em>VC1</em> gene and a coding-SNP (T/C) at position +1588 in the exon-5. Consequently, three distinct haplotypes (Hap-1, Hap-2 and Hap-3) were identified based on the size of the intron-4 and the allelic status of the SNP in exon-5. LC-MS/MS analysis confirms that the vicine concentration varied between 3.489 and 10.025 g/kg in the entire collection of germplasm. A strong correlation (<em>r</em> = 0.84**) was observed between haplotypes and variation in vicine concentration. Translation of the sequenced fragments revealed that, the coding-SNP doesn't not change the amino acid composition of the VC1 protein. Therefore, the coding-SNP was found to be a synonymous SNP. As the InDel1.4 was located within few hundred base pairs away from the previously reported “AT insertional-mutation”, which was responsible for very low or near-zero VC faba bean, and also shows correlation with vicine content, the InDel could be utilized for a simple, reliable and cost-effective molecular marker assisted selection and crop improvement for developing faba beans with reduced VC. The Hap-1 and Hap-2 have tremendous potential to be utilized in haplotype-based breeding for faba bean improvement to combat favism.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"41 ","pages":"Article 100481"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Faba bean (Vicia faba L.) is a popular legume due to its nutritional, medicinal and environmental benefits. But vicine and convicine (VC) remain as the main threats for “favism” in individuals with genetic deficiency of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme. Re-sequencing-based allele mining involving allele-specific Tetra-ARMS PCR has revealed a 92 bp InDel (Insertion-Deletion), designated as “InDel1.4” in the intron-4 of VC1 gene and a coding-SNP (T/C) at position +1588 in the exon-5. Consequently, three distinct haplotypes (Hap-1, Hap-2 and Hap-3) were identified based on the size of the intron-4 and the allelic status of the SNP in exon-5. LC-MS/MS analysis confirms that the vicine concentration varied between 3.489 and 10.025 g/kg in the entire collection of germplasm. A strong correlation (r = 0.84**) was observed between haplotypes and variation in vicine concentration. Translation of the sequenced fragments revealed that, the coding-SNP doesn't not change the amino acid composition of the VC1 protein. Therefore, the coding-SNP was found to be a synonymous SNP. As the InDel1.4 was located within few hundred base pairs away from the previously reported “AT insertional-mutation”, which was responsible for very low or near-zero VC faba bean, and also shows correlation with vicine content, the InDel could be utilized for a simple, reliable and cost-effective molecular marker assisted selection and crop improvement for developing faba beans with reduced VC. The Hap-1 and Hap-2 have tremendous potential to be utilized in haplotype-based breeding for faba bean improvement to combat favism.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信