Discovery of potential haplotypes associated with varying levels of vicine content due to the InDel1.4 and a coding-SNP in the VC1 gene in faba bean (Vicia faba L.)

IF 2.2 Q3 GENETICS & HEREDITY
Sadhan Debnath , Wricha Tyagi , Mayank Rai , Kuldeep Singh , Sujan Majumder , Naveen Duhan , Ng Tombisana Meetei
{"title":"Discovery of potential haplotypes associated with varying levels of vicine content due to the InDel1.4 and a coding-SNP in the VC1 gene in faba bean (Vicia faba L.)","authors":"Sadhan Debnath ,&nbsp;Wricha Tyagi ,&nbsp;Mayank Rai ,&nbsp;Kuldeep Singh ,&nbsp;Sujan Majumder ,&nbsp;Naveen Duhan ,&nbsp;Ng Tombisana Meetei","doi":"10.1016/j.plgene.2024.100481","DOIUrl":null,"url":null,"abstract":"<div><div>Faba bean (<em>Vicia faba</em> L.) is a popular legume due to its nutritional, medicinal and environmental benefits. But vicine and convicine (VC) remain as the main threats for “favism” in individuals with genetic deficiency of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme. <em>Re</em>-sequencing-based allele mining involving allele-specific Tetra-ARMS PCR has revealed a 92 bp InDel (Insertion-Deletion), designated as “InDel1.4” in the intron-4 of <em>VC1</em> gene and a coding-SNP (T/C) at position +1588 in the exon-5. Consequently, three distinct haplotypes (Hap-1, Hap-2 and Hap-3) were identified based on the size of the intron-4 and the allelic status of the SNP in exon-5. LC-MS/MS analysis confirms that the vicine concentration varied between 3.489 and 10.025 g/kg in the entire collection of germplasm. A strong correlation (<em>r</em> = 0.84**) was observed between haplotypes and variation in vicine concentration. Translation of the sequenced fragments revealed that, the coding-SNP doesn't not change the amino acid composition of the VC1 protein. Therefore, the coding-SNP was found to be a synonymous SNP. As the InDel1.4 was located within few hundred base pairs away from the previously reported “AT insertional-mutation”, which was responsible for very low or near-zero VC faba bean, and also shows correlation with vicine content, the InDel could be utilized for a simple, reliable and cost-effective molecular marker assisted selection and crop improvement for developing faba beans with reduced VC. The Hap-1 and Hap-2 have tremendous potential to be utilized in haplotype-based breeding for faba bean improvement to combat favism.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"41 ","pages":"Article 100481"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Faba bean (Vicia faba L.) is a popular legume due to its nutritional, medicinal and environmental benefits. But vicine and convicine (VC) remain as the main threats for “favism” in individuals with genetic deficiency of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme. Re-sequencing-based allele mining involving allele-specific Tetra-ARMS PCR has revealed a 92 bp InDel (Insertion-Deletion), designated as “InDel1.4” in the intron-4 of VC1 gene and a coding-SNP (T/C) at position +1588 in the exon-5. Consequently, three distinct haplotypes (Hap-1, Hap-2 and Hap-3) were identified based on the size of the intron-4 and the allelic status of the SNP in exon-5. LC-MS/MS analysis confirms that the vicine concentration varied between 3.489 and 10.025 g/kg in the entire collection of germplasm. A strong correlation (r = 0.84**) was observed between haplotypes and variation in vicine concentration. Translation of the sequenced fragments revealed that, the coding-SNP doesn't not change the amino acid composition of the VC1 protein. Therefore, the coding-SNP was found to be a synonymous SNP. As the InDel1.4 was located within few hundred base pairs away from the previously reported “AT insertional-mutation”, which was responsible for very low or near-zero VC faba bean, and also shows correlation with vicine content, the InDel could be utilized for a simple, reliable and cost-effective molecular marker assisted selection and crop improvement for developing faba beans with reduced VC. The Hap-1 and Hap-2 have tremendous potential to be utilized in haplotype-based breeding for faba bean improvement to combat favism.

Abstract Image

蚕豆(Vicia faba L.)中InDel1.4和VC1基因编码snp与不同水平疫苗含量相关的潜在单倍型的发现
蚕豆(Vicia Faba L.)是一种受欢迎的豆类,因其营养,药用和环境效益。但是,在基因缺乏葡萄糖-6-磷酸脱氢酶(G6PDH)的个体中,疫苗和疫苗(VC)仍然是“偏爱症”的主要威胁。基于重测序的等位基因挖掘,包括等位基因特异性的teat - arms PCR,发现了一个92 bp的InDel(插入-删除),在VC1基因的内含子4中被指定为“InDel1.4”,在外显子5 +1588位置有一个编码snp (T/C)。因此,根据内含子4的大小和外显子5上SNP的等位基因状态,鉴定出三种不同的单倍型(Hap-1、Hap-2和Hap-3)。LC-MS/MS分析证实,整个采集地的疫苗浓度在3.489 ~ 10.025 g/kg之间。单倍型与疫苗浓度变异呈强相关(r = 0.84**)。对序列片段的翻译表明,编码snp不会改变VC1蛋白的氨基酸组成。因此,编码SNP被发现是一个同义SNP。由于InDel1.4与先前报道的导致VC极低或接近零的“AT插入突变”相距几百个碱基对,并且与疫苗含量相关,因此InDel可以作为一种简单、可靠、经济的分子标记辅助选择和作物改良,用于开发低VC蚕豆。Hap-1和Hap-2在蚕豆单倍型改良育种中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信