Plant GenePub Date : 2023-03-01DOI: 10.1016/j.plgene.2022.100395
Robert Penchovsky , Dimitrios Kaloudas
{"title":"Molecular factors affecting tomato fruit size","authors":"Robert Penchovsky , Dimitrios Kaloudas","doi":"10.1016/j.plgene.2022.100395","DOIUrl":"10.1016/j.plgene.2022.100395","url":null,"abstract":"<div><p>As the tomato fruit grows, it goes through different developmental stages until it acquires its full size. This size is achieved with the completion οf the Μature Green stage of tomato development, after which the fruit enters the Turning stage, signifying the passage from growth to ripening, where it gradually loses its green color in favor of red and begins to soften. Until it reaches the Mature Green, the tomato goes through a series of cell divisions and expansions. Several vital factors control and affect the final size of the tomato. Those factors include genes controlling the cells' size and structure, the meristematic tissue, growth hormones essential for the initiation of the fruit, the compartmentalization of the fruit, as well as genes respοnsible fοr the structure οf the cell wall. In this review, we present critical genetic and hormonal factors that influence the final size of a fruit. Tomato is a model οrganism for elucidating fleshy fruit growth and development. In this review we emphasize on factors affecting the fruit's final size up tο the completion οf the Mature Green growth phase, where the fruits reach their prime size.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100395"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47438370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to “Screening of Cicer arietinum L. genotypes under combined presence of NaCl and anthracene using membership function value of stress tolerance” [Plant Gene 31C (2022) 100371]","authors":"Harleen Kaur , Ravneet Kaur , Geetanjali Manchanda , Shayla Bindra , Ashish Sharma","doi":"10.1016/j.plgene.2022.100399","DOIUrl":"10.1016/j.plgene.2022.100399","url":null,"abstract":"","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100399"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41459332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant GenePub Date : 2023-03-01DOI: 10.1016/j.plgene.2022.100401
S. Sivakumar , G. Prem Kumar , S. Vinoth , G. Siva , M. Vigneswaran , P. Gurusaravanan , M. Kanakachari , T. Senthil Kumar , P. Baskaran , N. Jayabalan
{"title":"Erratum to “Temporal expression profiling of GhNAC transcription factor genes in cotton cultivars under abiotic stresses” [Plant Gene 28C (2021) 100334]","authors":"S. Sivakumar , G. Prem Kumar , S. Vinoth , G. Siva , M. Vigneswaran , P. Gurusaravanan , M. Kanakachari , T. Senthil Kumar , P. Baskaran , N. Jayabalan","doi":"10.1016/j.plgene.2022.100401","DOIUrl":"10.1016/j.plgene.2022.100401","url":null,"abstract":"","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100401"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42223936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant GenePub Date : 2023-03-01DOI: 10.1016/j.plgene.2022.100393
Namita Bhutani, Rajat Maheshwari, Pradeep Kumar, Pooja Suneja
{"title":"Erratum to “Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants” [Plant Gene 28C (2021) 100326]","authors":"Namita Bhutani, Rajat Maheshwari, Pradeep Kumar, Pooja Suneja","doi":"10.1016/j.plgene.2022.100393","DOIUrl":"10.1016/j.plgene.2022.100393","url":null,"abstract":"","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100393"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42374665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant GenePub Date : 2023-03-01DOI: 10.1016/j.plgene.2023.100405
Mohan Durgadevi, Namasivayam Parameswari, Saidi Noor Baity, Ho Chai-Ling
{"title":"Expression of genes related to hydrogen peroxide generation and phytohormones in Ganoderma-inoculated oil palm seedlings pretreated with phytohormones and their inhibitors","authors":"Mohan Durgadevi, Namasivayam Parameswari, Saidi Noor Baity, Ho Chai-Ling","doi":"10.1016/j.plgene.2023.100405","DOIUrl":"10.1016/j.plgene.2023.100405","url":null,"abstract":"<div><p>Hydrogen peroxide, salicylic acid (SA) and jasmonic acid (JA) are reported to play important role in plant defense responses against pathogens. In this study, we analyzed the transcript abundance of oil palm respiratory burst oxidase B (<em>EgRbohB1</em>) and H (<em>EgRbohH</em>), Coronatine Insensitive 1 (<em>EgCOI1</em>), OPR5 (<em>EgOPR5</em>), hypersensitive induced response 1 (<em>EgHIR1</em>) and Nonexpressor of pathogenesis-related (<em>EgNPR1</em>) in <em>Ganoderma boninense</em>-inoculated oil palm roots that were pretreated with SA, JA and their inhibitors, paclobutrazol (PAC) and diethyldithiocarbamate (DIECA), respectively. We showed that <em>EgNPR1</em> was down-regulated by <em>G. boninense</em> infection in SA-pretreated oil palm roots while <em>EgHIR1</em> was up-regulated by <em>G. boninense</em> in PAC-pretreated oil palm roots. <em>G. boninense</em> inoculation did not change the gene expression levels of <em>EgOPR5</em> in JA- and DIECA-treated oil palm roots significantly, compared to the uninoculated oil palms roots that were treated similarly. <em>EgCOI1</em> was up-regulated by <em>G. boninense</em> in JA- and DIECA-pretreated oil palm roots, respectively. <em>G. boninense</em> up-regulated <em>EgRbohB1</em> in SA-pretreated oil palm roots but down-regulated it in PAC-pretreated oil palm roots. <em>EgRbohH</em> was also down-regulated by <em>G. boninense</em> in PAC-pretreated oil palm roots. These findings facilitate the understanding of phytohormone effects on oil palm-<em>Ganoderma</em> interaction.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100405"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49652013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant GenePub Date : 2022-12-01DOI: 10.1016/j.plgene.2022.100379
Muhammad Abdullah , Irfan Ali Sabir , Iftikhar Hussain Shah , Mateen Sajid , Xunju Liu , Songtao Jiu , Muhammad Aamir Manzoor , Caixi Zhang
{"title":"The role of gene duplication in the divergence of the sweet cherry","authors":"Muhammad Abdullah , Irfan Ali Sabir , Iftikhar Hussain Shah , Mateen Sajid , Xunju Liu , Songtao Jiu , Muhammad Aamir Manzoor , Caixi Zhang","doi":"10.1016/j.plgene.2022.100379","DOIUrl":"10.1016/j.plgene.2022.100379","url":null,"abstract":"<div><p><span><span>Gene duplication<span> is a drive for genetic complexity and diversity, and can occur by several mechanisms. The plant phenotypic evolution is assumed to have been aided by whole-genome duplication. WGD (Whole genome duplication) events are often separated by tens of millions of years, resulting in a lack of a constant supply of variations for adaptation to ever-changing environments. </span></span>Sweet cherry is a major </span>Rosaceae<span><span> fruit crop<span>, however, it's uncertain whether distinct forms of gene duplications throughout evolution in sweet cherry where whole genome has been duplicated. In this study, genes were identified that derived from transposed, tandem, whole-genome, dispersed and proximal duplication events and differ in abundance, selection pressures, uninterrupted genes, expression divergence, as well as Go ontology enrichment analysis, and duplicate gene evolution were investigated using integrated large-scale genome and </span></span>transcriptome<span> datasets. The proximal and tandem mode of duplication expressed extreme conserve expression along with slow divergence, while transposed genes show higher regulatory divergence expression than other modes of duplication. We also examined at the development and expansion of gene families involved in the sugar metabolism pathways and organic acid, which are associated to the flavour and quality of sweet cherry fruit. The current study provides knowledge on the evolutionary fate and consequences of duplicate genes, providing the groundwork for future research into the dynamic evolution of duplicate genes.</span></span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100379"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42573580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant GenePub Date : 2022-12-01DOI: 10.1016/j.plgene.2022.100385
Raj Kumar Thapa , Gang Tian , Xin Xie , Susanne E. Kohalmi , Yuhai Cui
{"title":"Involvement of NUCLEOPORIN1 in cell division and expansion in Arabidopsis","authors":"Raj Kumar Thapa , Gang Tian , Xin Xie , Susanne E. Kohalmi , Yuhai Cui","doi":"10.1016/j.plgene.2022.100385","DOIUrl":"10.1016/j.plgene.2022.100385","url":null,"abstract":"<div><p><span>NUCLEOPORIN1 (NUP1), a component of the nuclear pore complex and an anchor for the TREX-2 mRNA export complex, was previously reported to have diverse functions in </span><span><em>Arabidopsis</em></span>. Several studies have shown that mutations in <em>NUP1</em> lead to small stature plants with small leaves; however, the underlying mechanism is unknown. Here, we investigated the small leaf phenotype of <em>nup1–1</em><span> plants and found that cell number and size are reduced. Next, gene expression analysis revealed significant changes in the expression of several cell-cycle and expansion-related genes in leaves of </span><em>nup1–1</em><span><span> plants compared to the wild-type control (Col-0). Furthermore, the subcellular localization of NUP1 throughout mitosis uncovered the potential role of NUP1 in aligning the chromosome during metaphase and separation of chromosomes in </span>anaphase. Our findings suggest that NUP1 is required for maintaining normal plant stature by regulating cell size and number. Further protein-protein interaction of NUP1 and metaphase-anaphase-related proteins would help identify the precise roles of NUP1 in cell division.</span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100385"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41981911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative evolutionary dynamics of the 5’cis-regulatory elements (CREs) of miR167 genes in diploid and allopolyploid cotton species","authors":"Aradhana Aggarwal , Sakshi Arora , Aniruddhabhai Khuman , Kalpita Singh , Vijay Kumar , Bhupendra Chaudhary","doi":"10.1016/j.plgene.2022.100380","DOIUrl":"10.1016/j.plgene.2022.100380","url":null,"abstract":"<div><p><span><span>Cotton fiber morphogenesis is tightly regulated by several </span>microRNAs (miRNAs) including miR167 which regulates auxin-signaling through the transcriptional regulation of its target genes during fiber development</span><em>.</em> To emphasize the evolution of spatiotemporal regulatory attributes of miR167 genes during fiber development, a comparative analysis of 5′<em>cis</em>-regulatory elements (CREs) and coding sequences of miR167 genes from progenitor diploid A<sub>2</sub> (<em>G. arboreum</em>)<em>,</em> D<sub>5</sub> (<em>G. raimondii</em><span>) species and decedent allopolyploid AD</span><sub>1</sub> (<em>G. hirsutum</em>) and AD<sub>2</sub> (<em>G. barbadense</em>) species were performed in an evolutionary framework. Interestingly, different miR167 genes were conserved both in A- and D-subgenomes of AD<sub>1</sub> and AD<sub>2</sub> species (>90% sequence similarities) and acquired the least variations in gene sequences during allopolyploidy followed by species diversification. However, substantial accumulation of structural variations in 1.5kb long upstream regions exhibited that the regulatory regions had undergone extensive evolutionary changes during cotton evolution in both diploid and allopolyploid species. Several unique CREs could be identified and further classified into development-, light-, organ-, stress- and hormone-responsive motifs with their varied frequencies. Co-expression analyses of miR167 genes and their respective CREs-binding transcription factors (TFs) showed tissue- and developmental stage-specific correlation, especially with bHLH transcription factor (R<sup>2</sup> = 0.93) during fiber initiation and elongation stages of AD<sub>1</sub> species. The reconstructed gene networks of the most significant predicted TFs with CREs underscored the possible genetic control mechanisms of these factors during fiber development. These observations highlighted that various regulatory motifs were preserved during cotton evolution and may be exploited for future crop improvement programs.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100380"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49326706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}