Joseph N. Amoah , Monica Ode Adu-Gyamfi , Albert Owusu Kwarteng
{"title":"Unraveling the dynamics of starch metabolism and expression profiles of starch synthesis genes in millet under drought stress","authors":"Joseph N. Amoah , Monica Ode Adu-Gyamfi , Albert Owusu Kwarteng","doi":"10.1016/j.plgene.2024.100449","DOIUrl":null,"url":null,"abstract":"<div><p>Drought impacts global food production, prompting extensive research to understand drought tolerance in millet. However, knowledge regarding the extent of tolerance achievable through acclimation remains limited. The objective of the study is to assess the effect of drought acclimation (hardening) on drought tolerance in millet and to investigate the physiological, biochemical, and transcriptional changes associated with starch metabolism in millet. To achieve this aim, two millet genotypes (‘PI 689680’ and ‘PI 662292’), exhibiting differential responses to drought stress, were subjected to various treatments: control (unstressed), drought acclimation (DA; two stress episodes with recovery), and non-acclimation (NA; a single stress episode with no recovery).. The study revealed that drought-induced oxidative stress, manifested by increased amylose, amylopectin, and total starch accumulation in NA plants compared to DA counterparts. Additionally, NA plants experienced a notable reduction in growth and photosynthetic activity. Expression patterns of starch-related transcripts were relatively elevated in NA compared to DA plants. These findings highlighted that acclimation to drought conferred tolerance to subsequent stress events by mitigating oxidative damage induced by drought stress. DA plants exhibited improved tolerance, characterized by enhanced growth, net photosynthetic rate, stomatal activity, osmotic adjustment, starch accumulation, enzyme activity, and the regulated expression of related genes. The study advocates for adopting acclimation as a strategic approach to mitigate the adverse effects of metabolic disruptions induced by drought in millet.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"38 ","pages":"Article 100449"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352407324000040/pdfft?md5=0d43f7be446c530ae3ca3969779d8ed1&pid=1-s2.0-S2352407324000040-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought impacts global food production, prompting extensive research to understand drought tolerance in millet. However, knowledge regarding the extent of tolerance achievable through acclimation remains limited. The objective of the study is to assess the effect of drought acclimation (hardening) on drought tolerance in millet and to investigate the physiological, biochemical, and transcriptional changes associated with starch metabolism in millet. To achieve this aim, two millet genotypes (‘PI 689680’ and ‘PI 662292’), exhibiting differential responses to drought stress, were subjected to various treatments: control (unstressed), drought acclimation (DA; two stress episodes with recovery), and non-acclimation (NA; a single stress episode with no recovery).. The study revealed that drought-induced oxidative stress, manifested by increased amylose, amylopectin, and total starch accumulation in NA plants compared to DA counterparts. Additionally, NA plants experienced a notable reduction in growth and photosynthetic activity. Expression patterns of starch-related transcripts were relatively elevated in NA compared to DA plants. These findings highlighted that acclimation to drought conferred tolerance to subsequent stress events by mitigating oxidative damage induced by drought stress. DA plants exhibited improved tolerance, characterized by enhanced growth, net photosynthetic rate, stomatal activity, osmotic adjustment, starch accumulation, enzyme activity, and the regulated expression of related genes. The study advocates for adopting acclimation as a strategic approach to mitigate the adverse effects of metabolic disruptions induced by drought in millet.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.