Plant Gene最新文献

筛选
英文 中文
Erratum to “Temporal expression profiling of GhNAC transcription factor genes in cotton cultivars under abiotic stresses” [Plant Gene 28C (2021) 100334] “非生物胁迫下棉花品种中GhNAC转录因子基因的时间表达谱”勘误表[Plant Gene 28C(2021)100334]
Plant Gene Pub Date : 2023-03-01 DOI: 10.1016/j.plgene.2022.100401
S. Sivakumar , G. Prem Kumar , S. Vinoth , G. Siva , M. Vigneswaran , P. Gurusaravanan , M. Kanakachari , T. Senthil Kumar , P. Baskaran , N. Jayabalan
{"title":"Erratum to “Temporal expression profiling of GhNAC transcription factor genes in cotton cultivars under abiotic stresses” [Plant Gene 28C (2021) 100334]","authors":"S. Sivakumar , G. Prem Kumar , S. Vinoth , G. Siva , M. Vigneswaran , P. Gurusaravanan , M. Kanakachari , T. Senthil Kumar , P. Baskaran , N. Jayabalan","doi":"10.1016/j.plgene.2022.100401","DOIUrl":"10.1016/j.plgene.2022.100401","url":null,"abstract":"","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100401"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42223936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants” [Plant Gene 28C (2021) 100326] “辐射山茱萸(Vigna radiata)、木茱萸(Vigna unguguulata)和山茱萸(Cajanus cajan)根瘤和根内生细菌的生物勘探及其作为生物接种剂的潜力”[植物基因28C (2021) 100326]
Plant Gene Pub Date : 2023-03-01 DOI: 10.1016/j.plgene.2022.100393
Namita Bhutani, Rajat Maheshwari, Pradeep Kumar, Pooja Suneja
{"title":"Erratum to “Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants” [Plant Gene 28C (2021) 100326]","authors":"Namita Bhutani, Rajat Maheshwari, Pradeep Kumar, Pooja Suneja","doi":"10.1016/j.plgene.2022.100393","DOIUrl":"10.1016/j.plgene.2022.100393","url":null,"abstract":"","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100393"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42374665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of genes related to hydrogen peroxide generation and phytohormones in Ganoderma-inoculated oil palm seedlings pretreated with phytohormones and their inhibitors 植物激素及其抑制剂预处理后接种油棕的灵芝幼苗中过氧化氢生成和植物激素相关基因的表达
Plant Gene Pub Date : 2023-03-01 DOI: 10.1016/j.plgene.2023.100405
Mohan Durgadevi, Namasivayam Parameswari, Saidi Noor Baity, Ho Chai-Ling
{"title":"Expression of genes related to hydrogen peroxide generation and phytohormones in Ganoderma-inoculated oil palm seedlings pretreated with phytohormones and their inhibitors","authors":"Mohan Durgadevi,&nbsp;Namasivayam Parameswari,&nbsp;Saidi Noor Baity,&nbsp;Ho Chai-Ling","doi":"10.1016/j.plgene.2023.100405","DOIUrl":"10.1016/j.plgene.2023.100405","url":null,"abstract":"<div><p>Hydrogen peroxide, salicylic acid (SA) and jasmonic acid (JA) are reported to play important role in plant defense responses against pathogens. In this study, we analyzed the transcript abundance of oil palm respiratory burst oxidase B (<em>EgRbohB1</em>) and H (<em>EgRbohH</em>), Coronatine Insensitive 1 (<em>EgCOI1</em>), OPR5 (<em>EgOPR5</em>), hypersensitive induced response 1 (<em>EgHIR1</em>) and Nonexpressor of pathogenesis-related (<em>EgNPR1</em>) in <em>Ganoderma boninense</em>-inoculated oil palm roots that were pretreated with SA, JA and their inhibitors, paclobutrazol (PAC) and diethyldithiocarbamate (DIECA), respectively. We showed that <em>EgNPR1</em> was down-regulated by <em>G. boninense</em> infection in SA-pretreated oil palm roots while <em>EgHIR1</em> was up-regulated by <em>G. boninense</em> in PAC-pretreated oil palm roots. <em>G. boninense</em> inoculation did not change the gene expression levels of <em>EgOPR5</em> in JA- and DIECA-treated oil palm roots significantly, compared to the uninoculated oil palms roots that were treated similarly. <em>EgCOI1</em> was up-regulated by <em>G. boninense</em> in JA- and DIECA-pretreated oil palm roots, respectively. <em>G. boninense</em> up-regulated <em>EgRbohB1</em> in SA-pretreated oil palm roots but down-regulated it in PAC-pretreated oil palm roots. <em>EgRbohH</em> was also down-regulated by <em>G. boninense</em> in PAC-pretreated oil palm roots. These findings facilitate the understanding of phytohormone effects on oil palm-<em>Ganoderma</em> interaction.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100405"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49652013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Nuclear body formation by Arabidopsis CPL1-RCF3 complex requires single-stranded RNA-binding domains” [Plant Gene 22C (2020) 100224] “拟南芥CPL1-RCF3复合物形成核体需要单链rna结合域”的勘误[Plant Gene 22C (2020) 100224]
Plant Gene Pub Date : 2023-03-01 DOI: 10.1016/j.plgene.2022.100400
In Sil Jeong , Midori Tabara , Toshiyuki Fukuhara , Hisashi Koiwa
{"title":"Erratum to “Nuclear body formation by Arabidopsis CPL1-RCF3 complex requires single-stranded RNA-binding domains” [Plant Gene 22C (2020) 100224]","authors":"In Sil Jeong ,&nbsp;Midori Tabara ,&nbsp;Toshiyuki Fukuhara ,&nbsp;Hisashi Koiwa","doi":"10.1016/j.plgene.2022.100400","DOIUrl":"10.1016/j.plgene.2022.100400","url":null,"abstract":"","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"33 ","pages":"Article 100400"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46580756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan nanoparticles enhance drought tolerance in tomatoes (Solanum lycopersicum L) via gene expression modulation 壳聚糖纳米粒子通过基因表达调控提高番茄的抗旱性
Plant Gene Pub Date : 2023-01-01 DOI: 10.1016/j.plgene.2023.100406
Nermin G. Mohamed , Mohamed A. Abdel-Hakeem
{"title":"Chitosan nanoparticles enhance drought tolerance in tomatoes (Solanum lycopersicum L) via gene expression modulation","authors":"Nermin G. Mohamed ,&nbsp;Mohamed A. Abdel-Hakeem","doi":"10.1016/j.plgene.2023.100406","DOIUrl":"https://doi.org/10.1016/j.plgene.2023.100406","url":null,"abstract":"","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"34 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The role of gene duplication in the divergence of the sweet cherry 基因复制在甜樱桃分化中的作用
Plant Gene Pub Date : 2022-12-01 DOI: 10.1016/j.plgene.2022.100379
Muhammad Abdullah , Irfan Ali Sabir , Iftikhar Hussain Shah , Mateen Sajid , Xunju Liu , Songtao Jiu , Muhammad Aamir Manzoor , Caixi Zhang
{"title":"The role of gene duplication in the divergence of the sweet cherry","authors":"Muhammad Abdullah ,&nbsp;Irfan Ali Sabir ,&nbsp;Iftikhar Hussain Shah ,&nbsp;Mateen Sajid ,&nbsp;Xunju Liu ,&nbsp;Songtao Jiu ,&nbsp;Muhammad Aamir Manzoor ,&nbsp;Caixi Zhang","doi":"10.1016/j.plgene.2022.100379","DOIUrl":"10.1016/j.plgene.2022.100379","url":null,"abstract":"<div><p><span><span>Gene duplication<span> is a drive for genetic complexity and diversity, and can occur by several mechanisms. The plant phenotypic evolution is assumed to have been aided by whole-genome duplication. WGD (Whole genome duplication) events are often separated by tens of millions of years, resulting in a lack of a constant supply of variations for adaptation to ever-changing environments. </span></span>Sweet cherry is a major </span>Rosaceae<span><span> fruit crop<span>, however, it's uncertain whether distinct forms of gene duplications throughout evolution in sweet cherry where whole genome has been duplicated. In this study, genes were identified that derived from transposed, tandem, whole-genome, dispersed and proximal duplication events and differ in abundance, selection pressures, uninterrupted genes, expression divergence, as well as Go ontology enrichment analysis, and duplicate gene evolution were investigated using integrated large-scale genome and </span></span>transcriptome<span> datasets. The proximal and tandem mode of duplication expressed extreme conserve expression along with slow divergence, while transposed genes show higher regulatory divergence expression than other modes of duplication. We also examined at the development and expansion of gene families involved in the sugar metabolism pathways and organic acid, which are associated to the flavour and quality of sweet cherry fruit. The current study provides knowledge on the evolutionary fate and consequences of duplicate genes, providing the groundwork for future research into the dynamic evolution of duplicate genes.</span></span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100379"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42573580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Involvement of NUCLEOPORIN1 in cell division and expansion in Arabidopsis 拟南芥核孔蛋白1参与细胞分裂和扩增
Plant Gene Pub Date : 2022-12-01 DOI: 10.1016/j.plgene.2022.100385
Raj Kumar Thapa , Gang Tian , Xin Xie , Susanne E. Kohalmi , Yuhai Cui
{"title":"Involvement of NUCLEOPORIN1 in cell division and expansion in Arabidopsis","authors":"Raj Kumar Thapa ,&nbsp;Gang Tian ,&nbsp;Xin Xie ,&nbsp;Susanne E. Kohalmi ,&nbsp;Yuhai Cui","doi":"10.1016/j.plgene.2022.100385","DOIUrl":"10.1016/j.plgene.2022.100385","url":null,"abstract":"<div><p><span>NUCLEOPORIN1 (NUP1), a component of the nuclear pore complex and an anchor for the TREX-2 mRNA export complex, was previously reported to have diverse functions in </span><span><em>Arabidopsis</em></span>. Several studies have shown that mutations in <em>NUP1</em> lead to small stature plants with small leaves; however, the underlying mechanism is unknown. Here, we investigated the small leaf phenotype of <em>nup1–1</em><span> plants and found that cell number and size are reduced. Next, gene expression analysis revealed significant changes in the expression of several cell-cycle and expansion-related genes in leaves of </span><em>nup1–1</em><span><span> plants compared to the wild-type control (Col-0). Furthermore, the subcellular localization of NUP1 throughout mitosis uncovered the potential role of NUP1 in aligning the chromosome during metaphase and separation of chromosomes in </span>anaphase. Our findings suggest that NUP1 is required for maintaining normal plant stature by regulating cell size and number. Further protein-protein interaction of NUP1 and metaphase-anaphase-related proteins would help identify the precise roles of NUP1 in cell division.</span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100385"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41981911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparative evolutionary dynamics of the 5’cis-regulatory elements (CREs) of miR167 genes in diploid and allopolyploid cotton species 二倍体和异源多倍体棉花miR167基因5′顺式调控元件(cre)的进化动力学比较
Plant Gene Pub Date : 2022-12-01 DOI: 10.1016/j.plgene.2022.100380
Aradhana Aggarwal , Sakshi Arora , Aniruddhabhai Khuman , Kalpita Singh , Vijay Kumar , Bhupendra Chaudhary
{"title":"Comparative evolutionary dynamics of the 5’cis-regulatory elements (CREs) of miR167 genes in diploid and allopolyploid cotton species","authors":"Aradhana Aggarwal ,&nbsp;Sakshi Arora ,&nbsp;Aniruddhabhai Khuman ,&nbsp;Kalpita Singh ,&nbsp;Vijay Kumar ,&nbsp;Bhupendra Chaudhary","doi":"10.1016/j.plgene.2022.100380","DOIUrl":"10.1016/j.plgene.2022.100380","url":null,"abstract":"<div><p><span><span>Cotton fiber morphogenesis is tightly regulated by several </span>microRNAs (miRNAs) including miR167 which regulates auxin-signaling through the transcriptional regulation of its target genes during fiber development</span><em>.</em> To emphasize the evolution of spatiotemporal regulatory attributes of miR167 genes during fiber development, a comparative analysis of 5′<em>cis</em>-regulatory elements (CREs) and coding sequences of miR167 genes from progenitor diploid A<sub>2</sub> (<em>G. arboreum</em>)<em>,</em> D<sub>5</sub> (<em>G. raimondii</em><span>) species and decedent allopolyploid AD</span><sub>1</sub> (<em>G. hirsutum</em>) and AD<sub>2</sub> (<em>G. barbadense</em>) species were performed in an evolutionary framework. Interestingly, different miR167 genes were conserved both in A- and D-subgenomes of AD<sub>1</sub> and AD<sub>2</sub> species (&gt;90% sequence similarities) and acquired the least variations in gene sequences during allopolyploidy followed by species diversification. However, substantial accumulation of structural variations in 1.5kb long upstream regions exhibited that the regulatory regions had undergone extensive evolutionary changes during cotton evolution in both diploid and allopolyploid species. Several unique CREs could be identified and further classified into development-, light-, organ-, stress- and hormone-responsive motifs with their varied frequencies. Co-expression analyses of miR167 genes and their respective CREs-binding transcription factors (TFs) showed tissue- and developmental stage-specific correlation, especially with bHLH transcription factor (R<sup>2</sup> = 0.93) during fiber initiation and elongation stages of AD<sub>1</sub> species. The reconstructed gene networks of the most significant predicted TFs with CREs underscored the possible genetic control mechanisms of these factors during fiber development. These observations highlighted that various regulatory motifs were preserved during cotton evolution and may be exploited for future crop improvement programs.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100380"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49326706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cowpea transcriptional reprogramming during two different physiological moments of root dehydration 豇豆根脱水两个不同生理时刻的转录重编程
Plant Gene Pub Date : 2022-12-01 DOI: 10.1016/j.plgene.2022.100374
José Ribamar Costa Ferreira-Neto , Artemisa Nazaré Costa Borges , Manassés Daniel da Silva , David Anderson de Lima Morais , Valesca Pandolfi , Antônio Félix da Costa , Fabiana Aparecida Rodigues , Alexandre Lima Nepomuceno , Ana Maria Benko-Iseppon
{"title":"Cowpea transcriptional reprogramming during two different physiological moments of root dehydration","authors":"José Ribamar Costa Ferreira-Neto ,&nbsp;Artemisa Nazaré Costa Borges ,&nbsp;Manassés Daniel da Silva ,&nbsp;David Anderson de Lima Morais ,&nbsp;Valesca Pandolfi ,&nbsp;Antônio Félix da Costa ,&nbsp;Fabiana Aparecida Rodigues ,&nbsp;Alexandre Lima Nepomuceno ,&nbsp;Ana Maria Benko-Iseppon","doi":"10.1016/j.plgene.2022.100374","DOIUrl":"10.1016/j.plgene.2022.100374","url":null,"abstract":"<div><p><span>The transcriptomes of two distinct physiological moments of root dehydration condition were scrutinized in cowpea. The RD25 (first 25 min after root dehydration imposition) physiological data did not indicate significant alterations. For the other treatment, 150 min under root dehydration (RD150), all physiological data indicated that the studied cultivar was under stress. The physiological differences between RD25 and RD150 reverberated in the respective transcriptomes. The sets of </span><em>in silico</em><span> differentially expressed isoforms showed specificity for each treatment time. The comparison of T25 | UR [up-regulated transcripts in T25 (RD25 </span><em>vs.</em> Cont25)] <em>vs.</em> T150 | UR [up-regulated transcripts in T150 (RD150 <em>vs.</em><span> Cont150)] enriched GO terms (associated with abiotic stresses), despite certain similarities, showed us that they were associated with the respective physiological moments. Concerning gene families<span>, a large portion of those present in the T25 | UR were associated with signaling processes; for T150 | UR, a miscellany of families (from transcription factors to nonenzymatic proteins) was observed. The plotting of transcriptomics data in the KEGG Pathway database indicated a change in the topology of activated metabolic modules in T25 | UR </span></span><em>vs.</em> T150 | UR. For the latter, it was observed that most activated modules were associated with specialized metabolism. C2H2 and BPC1 transcription factors (TFs) sites were enriched at T25 | UR and T150 | UR gene promoters, suggesting the importance of these TFs for cowpea response to root dehydration. Our work provides insights into specific molecular actors and pathways, enhancing our global understanding of cowpea stress response.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100374"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41357563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seed coat mediated resistance against Aspergillus flavus infection in peanut 种皮介导花生对黄曲霉侵染的抗性
Plant Gene Pub Date : 2022-12-01 DOI: 10.1016/j.plgene.2022.100381
Lavanya Mendu , Christopher J. Cobos , Theophilus K. Tengey , Leslie Commey , Vimal K. Balasubramanian , Lindsay D. Williams , Kamalpreet K. Dhillon , Dimple Sharma , Manish K. Pandey , Hamidou Falalou , Rajeev K. Varshney , Mark D. Burow , Hari Kishan Sudini , Venugopal Mendu
{"title":"Seed coat mediated resistance against Aspergillus flavus infection in peanut","authors":"Lavanya Mendu ,&nbsp;Christopher J. Cobos ,&nbsp;Theophilus K. Tengey ,&nbsp;Leslie Commey ,&nbsp;Vimal K. Balasubramanian ,&nbsp;Lindsay D. Williams ,&nbsp;Kamalpreet K. Dhillon ,&nbsp;Dimple Sharma ,&nbsp;Manish K. Pandey ,&nbsp;Hamidou Falalou ,&nbsp;Rajeev K. Varshney ,&nbsp;Mark D. Burow ,&nbsp;Hari Kishan Sudini ,&nbsp;Venugopal Mendu","doi":"10.1016/j.plgene.2022.100381","DOIUrl":"10.1016/j.plgene.2022.100381","url":null,"abstract":"<div><p>Toxic metabolites known as aflatoxins are produced via certain species of the <em>Aspergillus</em> genus, specifically <em>A. flavus</em>, <em>A. parasiticus</em>, <em>A. nomius, and A. tamarie</em>. Although various pre- and post-harvest strategies have been employed, aflatoxin contamination remains a major problem within peanut crop, especially in subtropical environments. Aflatoxins are the most well-known and researched mycotoxins produced within the <em>Aspergillus</em> genus (namely <em>Aspergillus flavus</em>) and are classified as group 1 carcinogens. Their effects and etiology have been extensively researched and aflatoxins are commonly linked to growth defects and liver diseases in humans and livestock. Despite the known importance of seed coats in plant defense against pathogens, peanut seed coat mediated defenses against <em>Aspergillus flavus</em> resistance, have not received considerable attention. The peanut seed coat (testa) is primarily composed of a complex cell wall matrix consisting of cellulose, lignin, hemicellulose, phenolic compounds, and structural proteins. Due to cell wall desiccation during seed coat maturation, postharvest <em>A. flavus</em> infection occurs without the pathogen encountering any active genetic resistance from the live cell(s) and the testa acts as a physical and biochemical barrier only against infection. The structure of peanut seed coat cell walls and the presence of polyphenolic compounds have been reported to inhibit the growth of <em>A. flavus</em> and aflatoxin contamination; however, there is no comprehensive information available on peanut seed coat mediated resistance. We have recently reviewed various plant breeding, genomic, and molecular mechanisms, and management practices for reducing <em>A. flavus</em> infection and aflatoxin contamination. Further, we have also proved that seed coat acts as a physical and biochemical barrier against <em>A. flavus</em> infection. The current review focuses specifically on the peanut seed coat cell wall-mediated disease resistance, which will enable researchers to understand the mechanism and design efficient strategies for seed coat cell wall-mediated resistance against <em>A. flavus</em> infection and aflatoxin contamination.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100381"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352407322000312/pdfft?md5=6706137edf71a9d1f9f7bedbc7dbd5f6&pid=1-s2.0-S2352407322000312-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45010654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信