Alterations to the catalytic properties of methylketone synthase 2 from eggplant (Solanum melongena) by mutating the conserved aspartate into glutamate
Vy Le Uyen Khuat , Tien Minh Le , Trung Thach , Thuong Thi Hong Nguyen
{"title":"Alterations to the catalytic properties of methylketone synthase 2 from eggplant (Solanum melongena) by mutating the conserved aspartate into glutamate","authors":"Vy Le Uyen Khuat , Tien Minh Le , Trung Thach , Thuong Thi Hong Nguyen","doi":"10.1016/j.plgene.2024.100460","DOIUrl":null,"url":null,"abstract":"<div><p>Methylketone synthase 2 (MKS2) has been widely found in the plant kingdom and identified as a single-hotdog-fold acyl-lipid thioesterase (ALT) which mainly hydrolyzes the thioester bond in 3-ketoacyl-acyl carrier protein (3-ketoacyl-ACP) intermediates of the fatty acid biosynthetic pathway into free 3-keto fatty acids. Our previous study identified SmMKS2–2 as one of two functional ALTs in eggplant <em>Solanum melongena</em>. To gain mechanistic insights into catalysis by this enzyme, we herein combined biochemical and <em>in silico</em> structural analyses on SmMKS2–2. While SmMKS2–2 is capable of producing a wide range of 3-ketoacids from corresponding 3-ketoacyl-ACP substrates, SmMKS2–2-D77E mutant variant drops its thioesterase activity to the undetectable level. Consistently, the structural modelling of the D77E mutant displays that the orientation of the side chain carboxylate group of the replacing amino acid has been shifted compared to that of the native residue, resulting in smaller surface area of binding pocket that would dismiss nucleophilic catalysis of the mutant protein. Together, these data suggested that D77 is critical and specific for SmMKS2–2 to hydrolyze the thioester bond of acyl-ACP.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100460"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Methylketone synthase 2 (MKS2) has been widely found in the plant kingdom and identified as a single-hotdog-fold acyl-lipid thioesterase (ALT) which mainly hydrolyzes the thioester bond in 3-ketoacyl-acyl carrier protein (3-ketoacyl-ACP) intermediates of the fatty acid biosynthetic pathway into free 3-keto fatty acids. Our previous study identified SmMKS2–2 as one of two functional ALTs in eggplant Solanum melongena. To gain mechanistic insights into catalysis by this enzyme, we herein combined biochemical and in silico structural analyses on SmMKS2–2. While SmMKS2–2 is capable of producing a wide range of 3-ketoacids from corresponding 3-ketoacyl-ACP substrates, SmMKS2–2-D77E mutant variant drops its thioesterase activity to the undetectable level. Consistently, the structural modelling of the D77E mutant displays that the orientation of the side chain carboxylate group of the replacing amino acid has been shifted compared to that of the native residue, resulting in smaller surface area of binding pocket that would dismiss nucleophilic catalysis of the mutant protein. Together, these data suggested that D77 is critical and specific for SmMKS2–2 to hydrolyze the thioester bond of acyl-ACP.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.