Felipe Castro Teixeira , Erica Monik Silva Roque , Alex Martins Aguiar , Sâmia Alves Silva , Victor Breno Faustino Bezerra , Otávio Hugo Aguiar Gomes , Luciano Gomes Fietto , Murilo Siqueira Alves
{"title":"细胞核中凋亡染色质凝聚诱导剂:植物的全基因组分析以及豇豆严重花叶病毒感染期间的表达概况","authors":"Felipe Castro Teixeira , Erica Monik Silva Roque , Alex Martins Aguiar , Sâmia Alves Silva , Victor Breno Faustino Bezerra , Otávio Hugo Aguiar Gomes , Luciano Gomes Fietto , Murilo Siqueira Alves","doi":"10.1016/j.plgene.2024.100459","DOIUrl":null,"url":null,"abstract":"<div><p>Apoptotic Chromatin Condensation Inducer in the Nucleus (ACIN1) is a scaffold protein that was first described as a complex component responsible for triggering apoptosis in human cells. In plants, ACIN1 participates in silencing of <em>Flowering Locus C</em> (<em>FLC</em>), involved in vernalization in <em>Arabidopsis thaliana</em>. Contrary to what has been observed for humans, there are no reports on ACIN1 linked to programmed cell death (PCD) in plants. Actually, the function of ACIN1 in plants is still poorly understood. In the present study, a genome-wide analysis of the <em>ACIN1</em> gene family in plants identified 27 <em>ACIN1</em> orthologs from 19 species belonging to 12 plant families. The phylogenetic relationships, physicochemical properties, gene structure, conserved motifs, promoter <em>cis-</em>elements, chromosomal localization, syntenic regions, and protein network were investigated. Altogether, these analyzes revealed highly conserved domains in the structure of the ACIN1 proteins, as well as putative metacaspase cleavage sites, which suggest that they play a conserved function probably associated with the programmed cell death in plants. For instance, differential expression pattern and modulation of <em>ACIN1</em> were noticed after inoculation of cowpea with Cowpea severe mosaic virus (CPSMV). Therefore, this study was conducted to provide, for the first time, information on the evolutionary, structural, and functional characteristics of the <em>ACIN1</em> gene family as an initial effort towards understanding the role of these proteins in studied plant development and stress responses.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100459"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apoptotic chromatin condensation inducer in the nucleus: Genome-wide analysis in plants and expression profile during Cowpea Severe Mosaic Virus infection in Vigna unguiculata [L.] Walp\",\"authors\":\"Felipe Castro Teixeira , Erica Monik Silva Roque , Alex Martins Aguiar , Sâmia Alves Silva , Victor Breno Faustino Bezerra , Otávio Hugo Aguiar Gomes , Luciano Gomes Fietto , Murilo Siqueira Alves\",\"doi\":\"10.1016/j.plgene.2024.100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Apoptotic Chromatin Condensation Inducer in the Nucleus (ACIN1) is a scaffold protein that was first described as a complex component responsible for triggering apoptosis in human cells. In plants, ACIN1 participates in silencing of <em>Flowering Locus C</em> (<em>FLC</em>), involved in vernalization in <em>Arabidopsis thaliana</em>. Contrary to what has been observed for humans, there are no reports on ACIN1 linked to programmed cell death (PCD) in plants. Actually, the function of ACIN1 in plants is still poorly understood. In the present study, a genome-wide analysis of the <em>ACIN1</em> gene family in plants identified 27 <em>ACIN1</em> orthologs from 19 species belonging to 12 plant families. The phylogenetic relationships, physicochemical properties, gene structure, conserved motifs, promoter <em>cis-</em>elements, chromosomal localization, syntenic regions, and protein network were investigated. Altogether, these analyzes revealed highly conserved domains in the structure of the ACIN1 proteins, as well as putative metacaspase cleavage sites, which suggest that they play a conserved function probably associated with the programmed cell death in plants. For instance, differential expression pattern and modulation of <em>ACIN1</em> were noticed after inoculation of cowpea with Cowpea severe mosaic virus (CPSMV). Therefore, this study was conducted to provide, for the first time, information on the evolutionary, structural, and functional characteristics of the <em>ACIN1</em> gene family as an initial effort towards understanding the role of these proteins in studied plant development and stress responses.</p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"39 \",\"pages\":\"Article 100459\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407324000143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Apoptotic chromatin condensation inducer in the nucleus: Genome-wide analysis in plants and expression profile during Cowpea Severe Mosaic Virus infection in Vigna unguiculata [L.] Walp
Apoptotic Chromatin Condensation Inducer in the Nucleus (ACIN1) is a scaffold protein that was first described as a complex component responsible for triggering apoptosis in human cells. In plants, ACIN1 participates in silencing of Flowering Locus C (FLC), involved in vernalization in Arabidopsis thaliana. Contrary to what has been observed for humans, there are no reports on ACIN1 linked to programmed cell death (PCD) in plants. Actually, the function of ACIN1 in plants is still poorly understood. In the present study, a genome-wide analysis of the ACIN1 gene family in plants identified 27 ACIN1 orthologs from 19 species belonging to 12 plant families. The phylogenetic relationships, physicochemical properties, gene structure, conserved motifs, promoter cis-elements, chromosomal localization, syntenic regions, and protein network were investigated. Altogether, these analyzes revealed highly conserved domains in the structure of the ACIN1 proteins, as well as putative metacaspase cleavage sites, which suggest that they play a conserved function probably associated with the programmed cell death in plants. For instance, differential expression pattern and modulation of ACIN1 were noticed after inoculation of cowpea with Cowpea severe mosaic virus (CPSMV). Therefore, this study was conducted to provide, for the first time, information on the evolutionary, structural, and functional characteristics of the ACIN1 gene family as an initial effort towards understanding the role of these proteins in studied plant development and stress responses.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.