{"title":"Effect of high temperature stress on metabolome and aroma in rice grains","authors":"Anurag Mishra , Braj Bhushan Singh , Najam Akhtar Shakil , M.D. Shamim , Fozia Homa , Rajat Chaudhary , Prashant Yadav , Deepti Srivastava , Parveen Fatima , Vandana Sharma , Manoj Kumar Yadav , Pushpendra Kumar","doi":"10.1016/j.plgene.2024.100450","DOIUrl":null,"url":null,"abstract":"<div><p>Heat stress poses a significant challenge to global rice production, affecting yield and grain quality. Elevated temperatures during the flowering and grain-filling stages, both day and night, lead to reduced yield and compromised grain quality. This impact is more pronounced during nighttime high-temperature stress, seriously threatening rice productivity. With global temperatures rising, there is a looming threat to rice production. Aromatic rice, prized for superior aroma and grain quality, is particularly vulnerable to heat. Therefore, the present work has been carried out to investigate how high temperature affects the aromatic metabolites in rice grains among the 15 rice genotypes (fourteen aromatic and one non-aromatic rice i.e., Nagina 22). Results from the present study indicated that the inactive (mutated) <em>BADH2</em> gene expression was down-regulated under high-temperature stress conditions and no 2-acetyl-1-pyrroline (2-AP) accumulation was detected in the selected rice genotypes. However, the increase in levels of L-proline (precursor molecule for 2-AP) was detected, and due to the down-regulation of inactive <em>BADH2</em>, the oxidation of L-proline into 2-AP was affected. Proline amino acid significantly increased under high temperatures, impacting aroma quality. Metabolome studies revealed variations in compound detection among scented rice genotypes. Understanding these metabolites aids in addressing the loss of aroma in fragrant rice genotypes, offering insights into developing stable aromatic rice varieties under elevated temperature conditions. The study aims to identify metabolites causing aroma loss in aromatic rice. Results will aid in understanding aroma depletion mechanisms in scented rice under high-temperature stress, guiding the development of a stable aromatic rice variety in elevated temperatures.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"38 ","pages":"Article 100450"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Heat stress poses a significant challenge to global rice production, affecting yield and grain quality. Elevated temperatures during the flowering and grain-filling stages, both day and night, lead to reduced yield and compromised grain quality. This impact is more pronounced during nighttime high-temperature stress, seriously threatening rice productivity. With global temperatures rising, there is a looming threat to rice production. Aromatic rice, prized for superior aroma and grain quality, is particularly vulnerable to heat. Therefore, the present work has been carried out to investigate how high temperature affects the aromatic metabolites in rice grains among the 15 rice genotypes (fourteen aromatic and one non-aromatic rice i.e., Nagina 22). Results from the present study indicated that the inactive (mutated) BADH2 gene expression was down-regulated under high-temperature stress conditions and no 2-acetyl-1-pyrroline (2-AP) accumulation was detected in the selected rice genotypes. However, the increase in levels of L-proline (precursor molecule for 2-AP) was detected, and due to the down-regulation of inactive BADH2, the oxidation of L-proline into 2-AP was affected. Proline amino acid significantly increased under high temperatures, impacting aroma quality. Metabolome studies revealed variations in compound detection among scented rice genotypes. Understanding these metabolites aids in addressing the loss of aroma in fragrant rice genotypes, offering insights into developing stable aromatic rice varieties under elevated temperature conditions. The study aims to identify metabolites causing aroma loss in aromatic rice. Results will aid in understanding aroma depletion mechanisms in scented rice under high-temperature stress, guiding the development of a stable aromatic rice variety in elevated temperatures.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.