{"title":"对不同果实成熟阶段的栽培番茄和外来番茄中的伴侣和相互作用因子进行比较和综合的 omic 分析","authors":"Valentina Goytia Bertero , Paolo Cacchiarelli , Guillermo Raúl Pratta , Débora Pamela Arce","doi":"10.1016/j.plgene.2024.100448","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Heat Shock Proteins (HSPs) are a superfamily of chaperones that have been characterized in different organisms. In plants, HSPs promote protein folding and deaggregation during </span>abiotic stress or developmental changes. The aim of this work was to integrate several omic-data to identify chaperone and putative </span>interactors in </span><span><em>Solanum</em><em> lycopersicum</em></span> domesticated cultivar Caimanta (C) and in the latinoamerican wild <em>Solanum pimpinellifolium</em><span><span><span> (P) genotypes during fruit ripening<span><span> (FR), which are the parental lines of different breeding populations obtained by our research group. We were able to identify newly putative interactors and simultaneously induced HSP members at the transcription and proteomic levels. This integrative approach also revealed gene/protein families related to chlorophyll content, </span>photosynthesis and HSP70 chaperones in C. Furthermore, P was enriched with chaperones, including HSP20, </span></span>ATPase<span> families, (characteristic of HSP90 and HSP100) and other protein families involved in oxidoreductase activity, supporting the hypothesis of the existence of a relationship between HSPs and developmental processes as FR. Finally, we found that some of these up-regulated chaperones show the presence of heat shock element motifs in their promoters. Proteomic coupled with </span></span>transcriptomics and interactomics facilitated the exploration of a good new gene-context at the tomato development.</span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"37 ","pages":"Article 100448"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative and integrative omic analysis focused on chaperones and interactors in a cultivated and an exotic tomato at different fruit ripening stages\",\"authors\":\"Valentina Goytia Bertero , Paolo Cacchiarelli , Guillermo Raúl Pratta , Débora Pamela Arce\",\"doi\":\"10.1016/j.plgene.2024.100448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Heat Shock Proteins (HSPs) are a superfamily of chaperones that have been characterized in different organisms. In plants, HSPs promote protein folding and deaggregation during </span>abiotic stress or developmental changes. The aim of this work was to integrate several omic-data to identify chaperone and putative </span>interactors in </span><span><em>Solanum</em><em> lycopersicum</em></span> domesticated cultivar Caimanta (C) and in the latinoamerican wild <em>Solanum pimpinellifolium</em><span><span><span> (P) genotypes during fruit ripening<span><span> (FR), which are the parental lines of different breeding populations obtained by our research group. We were able to identify newly putative interactors and simultaneously induced HSP members at the transcription and proteomic levels. This integrative approach also revealed gene/protein families related to chlorophyll content, </span>photosynthesis and HSP70 chaperones in C. Furthermore, P was enriched with chaperones, including HSP20, </span></span>ATPase<span> families, (characteristic of HSP90 and HSP100) and other protein families involved in oxidoreductase activity, supporting the hypothesis of the existence of a relationship between HSPs and developmental processes as FR. Finally, we found that some of these up-regulated chaperones show the presence of heat shock element motifs in their promoters. Proteomic coupled with </span></span>transcriptomics and interactomics facilitated the exploration of a good new gene-context at the tomato development.</span></p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"37 \",\"pages\":\"Article 100448\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407324000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Comparative and integrative omic analysis focused on chaperones and interactors in a cultivated and an exotic tomato at different fruit ripening stages
Heat Shock Proteins (HSPs) are a superfamily of chaperones that have been characterized in different organisms. In plants, HSPs promote protein folding and deaggregation during abiotic stress or developmental changes. The aim of this work was to integrate several omic-data to identify chaperone and putative interactors in Solanum lycopersicum domesticated cultivar Caimanta (C) and in the latinoamerican wild Solanum pimpinellifolium (P) genotypes during fruit ripening (FR), which are the parental lines of different breeding populations obtained by our research group. We were able to identify newly putative interactors and simultaneously induced HSP members at the transcription and proteomic levels. This integrative approach also revealed gene/protein families related to chlorophyll content, photosynthesis and HSP70 chaperones in C. Furthermore, P was enriched with chaperones, including HSP20, ATPase families, (characteristic of HSP90 and HSP100) and other protein families involved in oxidoreductase activity, supporting the hypothesis of the existence of a relationship between HSPs and developmental processes as FR. Finally, we found that some of these up-regulated chaperones show the presence of heat shock element motifs in their promoters. Proteomic coupled with transcriptomics and interactomics facilitated the exploration of a good new gene-context at the tomato development.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.