Results in Applied Mathematics最新文献

筛选
英文 中文
A coupled high-accuracy phase-field fluid–structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium 弹性介质包围斯托克斯流体填充断裂的高精度相场流固耦合框架
IF 2
Results in Applied Mathematics Pub Date : 2024-04-13 DOI: 10.1016/j.rinam.2024.100455
Henry von Wahl , Thomas Wick
{"title":"A coupled high-accuracy phase-field fluid–structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium","authors":"Henry von Wahl ,&nbsp;Thomas Wick","doi":"10.1016/j.rinam.2024.100455","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100455","url":null,"abstract":"<div><p>In this work, we couple a high-accuracy phase-field fracture reconstruction approach iteratively to fluid–structure interaction. The key motivation is to utilise phase-field modelling to compute the fracture path. A mesh reconstruction allows a switch from interface-capturing to interface-tracking in which the coupling conditions can be realised in a highly accurate fashion. Consequently, inside the fracture, a Stokes flow can be modelled that is coupled to the surrounding elastic medium. A fully coupled approach is obtained by iterating between the phase-field and the fluid–structure interaction model. The resulting algorithm is demonstrated for several numerical examples of quasi-static brittle fractures. We consider both stationary and quasi-stationary problems. In the latter, the dynamics arise through an incrementally increasing given pressure.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100455"},"PeriodicalIF":2.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000256/pdfft?md5=d27201dc0b601b2f899490af0fb0795c&pid=1-s2.0-S2590037424000256-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Upper Bound of Near Potential Differential Games 论近势差博弈的上限
IF 2
Results in Applied Mathematics Pub Date : 2024-04-12 DOI: 10.1016/j.rinam.2024.100453
Balint Varga
{"title":"On the Upper Bound of Near Potential Differential Games","authors":"Balint Varga","doi":"10.1016/j.rinam.2024.100453","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100453","url":null,"abstract":"<div><p>This letter presents an extended analysis and a novel upper bound of the subclass of Linear Quadratic Near Potential Differential Games (LQ NPDG). LQ NPDGs are a subclass of potential differential games, for which there is a distance between an LQ exact potential differential game and the LQ NPDG. LQ NPDGs exhibit a unique characteristic: The smaller the distance from an LQ exact potential differential game, the more closer their dynamic trajectories. This letter introduces a novel upper bound for this distance. Moreover, a linear relation between this distance and the resulting trajectory errors is established, opening the possibility for further application of LQ NPDGs.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100453"},"PeriodicalIF":2.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000232/pdfft?md5=ab9c4fddd1098daffbde300c81a0c9f6&pid=1-s2.0-S2590037424000232-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis on nonlinear differential equation with a deviating argument via Faedo–Galerkin method 通过 Faedo-Galerkin 方法分析带有偏离参数的非线性微分方程
IF 2
Results in Applied Mathematics Pub Date : 2024-04-11 DOI: 10.1016/j.rinam.2024.100452
M. Manjula , E. Thilakraj , P. Sawangtong , K. Kaliraj
{"title":"Analysis on nonlinear differential equation with a deviating argument via Faedo–Galerkin method","authors":"M. Manjula ,&nbsp;E. Thilakraj ,&nbsp;P. Sawangtong ,&nbsp;K. Kaliraj","doi":"10.1016/j.rinam.2024.100452","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100452","url":null,"abstract":"<div><p>This article focuses on the impulsive fractional differential equation (FDE) of Sobolev type with a nonlocal condition. Existence and uniqueness of the approximations are determined via analytic semigroup and fixed point method. Convergence’s approximation is demonstrated by the idea of fractional power of a closed linear operator. Using an approximation procedure, a novel approach is reached. An illustration is used to clarify our key findings.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100452"},"PeriodicalIF":2.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000220/pdfft?md5=06f3a022546581dab00d18fcb1040308&pid=1-s2.0-S2590037424000220-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global boundedness and asymptotic behavior of the chemotaxis system for alopecia areata with singular sensitivity 具有奇异敏感性的脱发症趋化系统的全局有界性和渐近行为
IF 2
Results in Applied Mathematics Pub Date : 2024-04-06 DOI: 10.1016/j.rinam.2024.100450
Peng Gao , Lu Xu
{"title":"Global boundedness and asymptotic behavior of the chemotaxis system for alopecia areata with singular sensitivity","authors":"Peng Gao ,&nbsp;Lu Xu","doi":"10.1016/j.rinam.2024.100450","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100450","url":null,"abstract":"&lt;div&gt;&lt;p&gt;This paper is concerned with a three-component chemotaxis system for alopecia areata with singular sensitivity &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;under the homogeneous Neumann boundary conditions in a smoothly bounded domain &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100450"},"PeriodicalIF":2.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000207/pdfft?md5=2ce9c6cd1fc48d777a643ef5b1e29b62&pid=1-s2.0-S2590037424000207-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bernstein polynomials method for solving multi-order fractional neutral pantograph equations with error and stability analysis 伯恩斯坦多项式法求解多阶分数中性受电弓方程的误差和稳定性分析
IF 2
Results in Applied Mathematics Pub Date : 2024-04-06 DOI: 10.1016/j.rinam.2024.100451
M.H.T. Alshbool
{"title":"Bernstein polynomials method for solving multi-order fractional neutral pantograph equations with error and stability analysis","authors":"M.H.T. Alshbool","doi":"10.1016/j.rinam.2024.100451","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100451","url":null,"abstract":"<div><p>In this investigation, we present a new method for addressing fractional neutral pantograph problems, utilizing the Bernstein polynomials method. We obtain solutions for the fractional pantograph equations by employing operational matrices of differentiation, derived from fractional derivatives in the Caputo sense applied to Bernstein polynomials. Error analysis, along with Chebyshev algorithms and interpolation nodes, is employed for solution characterization. Both theoretical and practical stability analyses of the method are provided. Demonstrative examples indicate that our proposed techniques occasionally yield exact solutions. We compare the algorithms using several established analytical methods. Our results reveal that our algorithm, based on Bernstein series solution methods, outperforms others, exhibiting superior performance with higher accuracy orders compared to those obtained from Chebyshev spectral methods, Bernoulli wavelet method, and Spectral Tau method.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100451"},"PeriodicalIF":2.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000219/pdfft?md5=ab06e37e6cd3f1424460dd1b0b8627ac&pid=1-s2.0-S2590037424000219-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decay analysis of bivariate Chebyshev coefficients for functions with limited regularity 有限正则函数的双变量切比雪夫系数的衰减分析
IF 2
Results in Applied Mathematics Pub Date : 2024-04-01 DOI: 10.1016/j.rinam.2024.100449
Akansha
{"title":"Decay analysis of bivariate Chebyshev coefficients for functions with limited regularity","authors":"Akansha","doi":"10.1016/j.rinam.2024.100449","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100449","url":null,"abstract":"<div><p>The Chebyshev polynomial approximation is a useful tool to approximate smooth and non-smooth functions. In fact, for a sufficiently smooth function, the partial sum of Chebyshev series expansion provides optimal polynomial approximation. Moreover, because the construction of these polynomial approximations is computational efficient, they are widely used in numerical schemes for solving partial deferential equations. Significant efforts have been devoted to establishing decay bounds for series coefficients, including Chebyshev, Jacobi, and Legendre series, for both smooth and non-smooth univariate functions. However, the literature lacks similar estimates for bivariate functions. This paper aims to address this gap by examining the decay estimates of bivariate Chebyshev coefficients, contributing both theoretically and practically to the understanding and application of Chebyshev series expansions, especially concerning functions with limited smoothness. Additionally, we derive <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-error estimates for the partial sum of Chebyshev series expansions of functions with bounded Vitali variation. Furthermore, we provide an estimate for the discrepancy between exact and approximated Chebyshev coefficients, leveraging a quadrature formula. This analysis leads to the deduction of an asymptotic <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-approximation error for finite partial sums of Chebyshev series with approximated coefficients.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100449"},"PeriodicalIF":2.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000190/pdfft?md5=334341ce0f88b6c09ac44ee28059cd03&pid=1-s2.0-S2590037424000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140339465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling flow and deformation in porous media from pore-scale to the Darcy-scale 从孔隙尺度到达西尺度的多孔介质流动和变形建模
IF 2
Results in Applied Mathematics Pub Date : 2024-03-30 DOI: 10.1016/j.rinam.2024.100448
Zachary Hilliard , T. Matthew Evans , Malgorzata Peszynska
{"title":"Modeling flow and deformation in porous media from pore-scale to the Darcy-scale","authors":"Zachary Hilliard ,&nbsp;T. Matthew Evans ,&nbsp;Malgorzata Peszynska","doi":"10.1016/j.rinam.2024.100448","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100448","url":null,"abstract":"<div><p>In this paper we address the connections between the computational models of coupled flow and mechanical deformation in soils at the Darcy-scale and pore-scale. At the Darcy scale the Biot model requires data including permeability which is traditionally provided by experiments and empirical measurements. At the pore-scale we consider the Discrete Element Method (DEM) to generate physically realistic assemblies of the particles, and we follow up with the Stokes flow model. Next we apply upscaling to obtain the permeabilities which we find dependent on the deformation. We outline the workflow with its challenges and methods, and present results which show, <em>e.g.</em>, hysteretic dependence of the permeability and porosity on the load. We also show how to incorporate the deformation dependent permeability in a nonlinear Biot model, and illustrate with computational results.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100448"},"PeriodicalIF":2.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000189/pdfft?md5=d898a55f18e89b7c4e166ed6d6bd5d46&pid=1-s2.0-S2590037424000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving the general form of the fractional Black–Scholes with two assets through Reconstruction Variational Iteration Method 通过重构变式迭代法求解有两种资产的分数布莱克-斯科尔斯(Black-Scholes)一般形式
IF 2
Results in Applied Mathematics Pub Date : 2024-03-04 DOI: 10.1016/j.rinam.2024.100444
Mohammad Hossein Akrami , Abbas Poya , Mohammad Ali Zirak
{"title":"Solving the general form of the fractional Black–Scholes with two assets through Reconstruction Variational Iteration Method","authors":"Mohammad Hossein Akrami ,&nbsp;Abbas Poya ,&nbsp;Mohammad Ali Zirak","doi":"10.1016/j.rinam.2024.100444","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100444","url":null,"abstract":"<div><p>The objective of this study is to examine the dynamic components of option pricing in the European put option market by utilizing the two-dimensional time fractional-order Black–Scholes equation. To enhance the classical Black–Scholes equation, we utilize the Caputo type of the Katugampola fractional derivative. The Reconstruction of Variational Iteration Method is employed as a powerful tool for analyzing option price behavior in the European-style market. In our investigation, we utilize this method to obtain an exact solution for fractional Black–Scholes with two assets. Moreover, the findings demonstrate the impressive effectiveness of the Reconstruction of Variational Iteration Method in addressing two-dimensional fractional-order differential equations, thereby highlighting its potential as a valuable numerical solution technique.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100444"},"PeriodicalIF":2.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000141/pdfft?md5=4214ce88ab9d4f3ab115e6fb282d676c&pid=1-s2.0-S2590037424000141-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A truncated matrix variate gamma distribution 截断矩阵变异伽马分布
IF 2
Results in Applied Mathematics Pub Date : 2024-03-04 DOI: 10.1016/j.rinam.2024.100446
Shokofeh Zinodiny , Saralees Nadarajah , Daya K. Nagar
{"title":"A truncated matrix variate gamma distribution","authors":"Shokofeh Zinodiny ,&nbsp;Saralees Nadarajah ,&nbsp;Daya K. Nagar","doi":"10.1016/j.rinam.2024.100446","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100446","url":null,"abstract":"<div><p>A truncated form of a matrix variate gamma distribution is introduced and a number of properties of this distribution such as cumulative distribution function, orthogonal invariance, moment generating function, marginal distribution of block matrices, and moments are derived. Some results on distribution of random quadratic forms are also derived.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100446"},"PeriodicalIF":2.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000165/pdfft?md5=98110453a7e2e198d07e4a1f52bb265e&pid=1-s2.0-S2590037424000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems 双线性对流扩散优化控制问题的特征有限元误差估计
IF 2
Results in Applied Mathematics Pub Date : 2024-03-02 DOI: 10.1016/j.rinam.2024.100445
Yuchun Hua, Yuelong Tang
{"title":"Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems","authors":"Yuchun Hua,&nbsp;Yuelong Tang","doi":"10.1016/j.rinam.2024.100445","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100445","url":null,"abstract":"<div><p>This paper investigates a fully discrete characteristic finite element approximation of bilinear unsteady convection–diffusion optimal control problems. The characteristic line method is used to treat the convection term and the finite element method is adopted to treat the diffusion term. The state and adjoint state are discretized by piecewise linear functions, the control is approximated by piecewise constant functions. A priori error estimates are derived for the state, adjoint state and control variables. Some numerical examples are provided to confirm our theoretical findings.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100445"},"PeriodicalIF":2.0,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000153/pdfft?md5=05a003cd457f9c451488ff6f6f452007&pid=1-s2.0-S2590037424000153-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140015389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信