The numerical solution of a Fredholm integral equations of the second kind by the weighted optimal quadrature formula

IF 1.4 Q2 MATHEMATICS, APPLIED
Abdullo Hayotov , Samandar Babaev
{"title":"The numerical solution of a Fredholm integral equations of the second kind by the weighted optimal quadrature formula","authors":"Abdullo Hayotov ,&nbsp;Samandar Babaev","doi":"10.1016/j.rinam.2024.100508","DOIUrl":null,"url":null,"abstract":"<div><div>This work considers the optimal quadrature formula in a Hilbert space for the numerical approximation of the integral equations. It discusses the sequence of solving integral equations with quadrature formulas. An optimal quadrature formula with weight is constructed in the Hilbert space. The algorithms for solving the integral equation are given using the constructed optimal quadrature formula and trapezoidal rule. Several integral equations are solved based on these algorithms.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100508"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work considers the optimal quadrature formula in a Hilbert space for the numerical approximation of the integral equations. It discusses the sequence of solving integral equations with quadrature formulas. An optimal quadrature formula with weight is constructed in the Hilbert space. The algorithms for solving the integral equation are given using the constructed optimal quadrature formula and trapezoidal rule. Several integral equations are solved based on these algorithms.
用加权最优正交公式数值求解弗里德霍尔姆第二类积分方程
这项研究考虑了希尔伯特空间中用于积分方程数值逼近的最优正交公式。它讨论了用正交公式求解积分方程的顺序。在希尔伯特空间中构建了带权重的最优正交公式。利用构建的最优正交公式和梯形法则给出了求解积分方程的算法。根据这些算法求解了几个积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信