Computing the coarseness measure of a bicolored point set over guillotine partitions

IF 1.4 Q2 MATHEMATICS, APPLIED
José Fernández Goycoolea , Luis H. Herrera , Pablo Pérez-Lantero , Carlos Seara
{"title":"Computing the coarseness measure of a bicolored point set over guillotine partitions","authors":"José Fernández Goycoolea ,&nbsp;Luis H. Herrera ,&nbsp;Pablo Pérez-Lantero ,&nbsp;Carlos Seara","doi":"10.1016/j.rinam.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><div>The coarseness of a set of points in the plane colored red and blue is a measure of how well the points are mixed together. It has appealing theoretical properties, including a connection to the set of points tendency to accept a good clustering partition. Yet, it is computationally expensive to compute exactly. In this paper, the notion of computing the coarseness using a guillotine partition approach is introduced, and efficient algorithms for computing this guillotine coarseness are presented: a top-down approach and a dynamic programming approach, both of them achieving polynomial time and space complexities. Finally, an even faster <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow></mrow></math></span> polynomial-time algorithm to compute a reduced version of the measurement named two-level guillotine coarseness is presented using geometric data structures for faster computations. These restrictions establish lower bounds for the general guillotine coarseness that allow the development of more efficient algorithms for computing it.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100503"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The coarseness of a set of points in the plane colored red and blue is a measure of how well the points are mixed together. It has appealing theoretical properties, including a connection to the set of points tendency to accept a good clustering partition. Yet, it is computationally expensive to compute exactly. In this paper, the notion of computing the coarseness using a guillotine partition approach is introduced, and efficient algorithms for computing this guillotine coarseness are presented: a top-down approach and a dynamic programming approach, both of them achieving polynomial time and space complexities. Finally, an even faster O(n2log2n) polynomial-time algorithm to compute a reduced version of the measurement named two-level guillotine coarseness is presented using geometric data structures for faster computations. These restrictions establish lower bounds for the general guillotine coarseness that allow the development of more efficient algorithms for computing it.
计算断头台分区上双色点集的粗略度量
红蓝两色平面中一组点的粗细度是衡量这些点混合在一起的程度。它具有吸引人的理论特性,包括与接受良好聚类分区的点集倾向相关联。然而,精确计算它的计算成本很高。本文介绍了使用断头台分区方法计算粗度的概念,并提出了计算这种断头台粗度的高效算法:一种自顶向下的方法和一种动态编程方法,这两种方法都实现了多项式时间和空间复杂度。最后,还提出了一种更快的 O(n2log2n) 多项式时间算法,利用几何数据结构计算被称为两级断头台粗度的简化版测量。这些限制建立了一般断头台粗度的下限,从而可以开发出更高效的计算算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信