A fitted mesh robust numerical method and analysis for the singularly perturbed parabolic PDEs with a degenerate coefficient

IF 1.4 Q2 MATHEMATICS, APPLIED
Hassan J. Al Salman , Fasika Wondimu Gelu , Ahmed A. Al Ghafli
{"title":"A fitted mesh robust numerical method and analysis for the singularly perturbed parabolic PDEs with a degenerate coefficient","authors":"Hassan J. Al Salman ,&nbsp;Fasika Wondimu Gelu ,&nbsp;Ahmed A. Al Ghafli","doi":"10.1016/j.rinam.2024.100519","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present a nearly second-order central finite difference approach for solving a singularly perturbed parabolic problem with a degenerate coefficient. The approach uses a Crank–Nicolson method to discretize the time direction on the uniform mesh and a second-order central finite difference method on the Shishkin mesh in the space direction. The solution to the problem shows a parabolic boundary layer around <span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Our error estimates indicate that the suggested approach is nearly second-order <span><math><mi>ɛ</mi></math></span>-uniformly convergent both in space and time directions. Some numerical results have been generated to validate the theoretical findings. Extensive comparisons have been carried out, demonstrating that the current approach is more accurate than previous methods in the literature.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100519"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742400089X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a nearly second-order central finite difference approach for solving a singularly perturbed parabolic problem with a degenerate coefficient. The approach uses a Crank–Nicolson method to discretize the time direction on the uniform mesh and a second-order central finite difference method on the Shishkin mesh in the space direction. The solution to the problem shows a parabolic boundary layer around x=0. Our error estimates indicate that the suggested approach is nearly second-order ɛ-uniformly convergent both in space and time directions. Some numerical results have been generated to validate the theoretical findings. Extensive comparisons have been carried out, demonstrating that the current approach is more accurate than previous methods in the literature.
具有退化系数的奇异摄动抛物型偏微分方程的拟合网格鲁棒数值方法与分析
本文给出了求解具有退化系数的奇摄动抛物型问题的近二阶中心有限差分方法。该方法在均匀网格上采用Crank-Nicolson方法对时间方向进行离散,在空间方向上采用二阶中心有限差分方法对Shishkin网格进行离散。该问题的解显示出x=0附近的抛物线边界层。我们的误差估计表明,所建议的方法在空间和时间方向上都是近二阶均匀收敛的。一些数值结果验证了理论结果。已经进行了广泛的比较,表明目前的方法比文献中以前的方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信