具有δ粘弹性阻尼的半线性结构σ演化模型弱耦合系统

IF 1.4 Q2 MATHEMATICS, APPLIED
Abdelhamid Mohammed Djaouti , Mourad Kainane mezadek , Mohamed Kainane mezadek , Ali M.A. Bany Awad
{"title":"具有δ粘弹性阻尼的半线性结构σ演化模型弱耦合系统","authors":"Abdelhamid Mohammed Djaouti ,&nbsp;Mourad Kainane mezadek ,&nbsp;Mohamed Kainane mezadek ,&nbsp;Ali M.A. Bany Awad","doi":"10.1016/j.rinam.2024.100490","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the study of global existence (in time) of solutions to a weakly coupled system of Cauchy problem for semilinear <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-evolution models with <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-visco-elastic damping. The system consists of two equations, one involving the function <span><math><mi>u</mi></math></span> and the other involving the function <span><math><mi>v</mi></math></span>. The equations are characterized by a classical power nonlinearity and a derivative-type nonlinearity. The main objective is to investigate the relationship between the regularity assumptions on the initial data and the range of permissible exponents <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the power nonlinearity. The paper considers the system in a spatial domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and a time domain <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>, with specific conditions on the parameters <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, under the symmetry property as well as the exponents <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The initial data <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></math></span> are required to satisfy certain conditions in terms of their integrability and Sobolev regularity.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100490"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly coupled system of semilinear structural σ-evolution models with δ- visco-elastic damping\",\"authors\":\"Abdelhamid Mohammed Djaouti ,&nbsp;Mourad Kainane mezadek ,&nbsp;Mohamed Kainane mezadek ,&nbsp;Ali M.A. Bany Awad\",\"doi\":\"10.1016/j.rinam.2024.100490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the study of global existence (in time) of solutions to a weakly coupled system of Cauchy problem for semilinear <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-evolution models with <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-visco-elastic damping. The system consists of two equations, one involving the function <span><math><mi>u</mi></math></span> and the other involving the function <span><math><mi>v</mi></math></span>. The equations are characterized by a classical power nonlinearity and a derivative-type nonlinearity. The main objective is to investigate the relationship between the regularity assumptions on the initial data and the range of permissible exponents <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the power nonlinearity. The paper considers the system in a spatial domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and a time domain <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>, with specific conditions on the parameters <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, under the symmetry property as well as the exponents <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The initial data <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></math></span> are required to satisfy certain conditions in terms of their integrability and Sobolev regularity.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100490\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文重点研究具有 δk-visco- 弹性阻尼的半线性 σk 演变模型的考希问题弱耦合系统的全局存在(时间)解。该系统由两个方程组成,一个涉及函数 u,另一个涉及函数 v。主要目的是研究初始数据的规则性假设与幂非线性中允许指数 p1 和 p2 的范围之间的关系。本文考虑了空间域 Rn 和时域(0,∞)中的系统,在对称性以及指数 p1 和 p2 的条件下,对参数 σ1、σ2、δ1 和 δ2 规定了具体条件。初始数据(u1,v1)需要满足一定的可整性和索波列夫正则性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly coupled system of semilinear structural σ-evolution models with δ- visco-elastic damping
This paper focuses on the study of global existence (in time) of solutions to a weakly coupled system of Cauchy problem for semilinear σk-evolution models with δk-visco-elastic damping. The system consists of two equations, one involving the function u and the other involving the function v. The equations are characterized by a classical power nonlinearity and a derivative-type nonlinearity. The main objective is to investigate the relationship between the regularity assumptions on the initial data and the range of permissible exponents p1 and p2 in the power nonlinearity. The paper considers the system in a spatial domain Rn and a time domain (0,), with specific conditions on the parameters σ1, σ2, δ1, and δ2, under the symmetry property as well as the exponents p1 and p2. The initial data (u1,v1) are required to satisfy certain conditions in terms of their integrability and Sobolev regularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信