通过交叉扩散模型中的拥挤诱导模式

IF 1.4 Q2 MATHEMATICS, APPLIED
Mohammed Aldandani , John Ward , Fordyce A. Davidson
{"title":"通过交叉扩散模型中的拥挤诱导模式","authors":"Mohammed Aldandani ,&nbsp;John Ward ,&nbsp;Fordyce A. Davidson","doi":"10.1016/j.rinam.2024.100506","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we focus on pattern formation in systems of interacting populations. We show that if one considers these populations to be “crowded” in a way that is defined below, then cross-diffusion terms appear naturally. Moreover, we show that these additional cross-diffusion terms can generate stable spatial patterns that are not manifest in the corresponding standard “dilute” formulation. This result demonstrates the need for care when choosing standard Fickian diffusion as the default in applications to population dynamics.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100506"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of patterns through crowding in a cross-diffusion model\",\"authors\":\"Mohammed Aldandani ,&nbsp;John Ward ,&nbsp;Fordyce A. Davidson\",\"doi\":\"10.1016/j.rinam.2024.100506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we focus on pattern formation in systems of interacting populations. We show that if one considers these populations to be “crowded” in a way that is defined below, then cross-diffusion terms appear naturally. Moreover, we show that these additional cross-diffusion terms can generate stable spatial patterns that are not manifest in the corresponding standard “dilute” formulation. This result demonstrates the need for care when choosing standard Fickian diffusion as the default in applications to population dynamics.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100506\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将重点研究相互作用种群系统中的模式形成。我们发现,如果按照下文定义的方式将这些种群视为 "拥挤 "的,那么交叉扩散项就会自然出现。此外,我们还证明,这些额外的交叉扩散项可以产生稳定的空间模式,而这些模式在相应的标准 "稀释 "公式中并不明显。这一结果表明,在人口动力学应用中,选择标准费克扩散作为默认值时需要小心谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induction of patterns through crowding in a cross-diffusion model
In this paper we focus on pattern formation in systems of interacting populations. We show that if one considers these populations to be “crowded” in a way that is defined below, then cross-diffusion terms appear naturally. Moreover, we show that these additional cross-diffusion terms can generate stable spatial patterns that are not manifest in the corresponding standard “dilute” formulation. This result demonstrates the need for care when choosing standard Fickian diffusion as the default in applications to population dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信