Abdelhamid Mohammed Djaouti , Mourad Kainane mezadek , Mohamed Kainane mezadek , Ali M.A. Bany Awad
{"title":"Weakly coupled system of semilinear structural σ-evolution models with δ- visco-elastic damping","authors":"Abdelhamid Mohammed Djaouti , Mourad Kainane mezadek , Mohamed Kainane mezadek , Ali M.A. Bany Awad","doi":"10.1016/j.rinam.2024.100490","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the study of global existence (in time) of solutions to a weakly coupled system of Cauchy problem for semilinear <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-evolution models with <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-visco-elastic damping. The system consists of two equations, one involving the function <span><math><mi>u</mi></math></span> and the other involving the function <span><math><mi>v</mi></math></span>. The equations are characterized by a classical power nonlinearity and a derivative-type nonlinearity. The main objective is to investigate the relationship between the regularity assumptions on the initial data and the range of permissible exponents <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the power nonlinearity. The paper considers the system in a spatial domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and a time domain <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>, with specific conditions on the parameters <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, under the symmetry property as well as the exponents <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The initial data <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></math></span> are required to satisfy certain conditions in terms of their integrability and Sobolev regularity.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100490"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the study of global existence (in time) of solutions to a weakly coupled system of Cauchy problem for semilinear -evolution models with -visco-elastic damping. The system consists of two equations, one involving the function and the other involving the function . The equations are characterized by a classical power nonlinearity and a derivative-type nonlinearity. The main objective is to investigate the relationship between the regularity assumptions on the initial data and the range of permissible exponents and in the power nonlinearity. The paper considers the system in a spatial domain and a time domain , with specific conditions on the parameters , , , and , under the symmetry property as well as the exponents and . The initial data are required to satisfy certain conditions in terms of their integrability and Sobolev regularity.