José Fernández Goycoolea , Luis H. Herrera , Pablo Pérez-Lantero , Carlos Seara
{"title":"计算断头台分区上双色点集的粗略度量","authors":"José Fernández Goycoolea , Luis H. Herrera , Pablo Pérez-Lantero , Carlos Seara","doi":"10.1016/j.rinam.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><div>The coarseness of a set of points in the plane colored red and blue is a measure of how well the points are mixed together. It has appealing theoretical properties, including a connection to the set of points tendency to accept a good clustering partition. Yet, it is computationally expensive to compute exactly. In this paper, the notion of computing the coarseness using a guillotine partition approach is introduced, and efficient algorithms for computing this guillotine coarseness are presented: a top-down approach and a dynamic programming approach, both of them achieving polynomial time and space complexities. Finally, an even faster <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow></mrow></math></span> polynomial-time algorithm to compute a reduced version of the measurement named two-level guillotine coarseness is presented using geometric data structures for faster computations. These restrictions establish lower bounds for the general guillotine coarseness that allow the development of more efficient algorithms for computing it.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100503"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the coarseness measure of a bicolored point set over guillotine partitions\",\"authors\":\"José Fernández Goycoolea , Luis H. Herrera , Pablo Pérez-Lantero , Carlos Seara\",\"doi\":\"10.1016/j.rinam.2024.100503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The coarseness of a set of points in the plane colored red and blue is a measure of how well the points are mixed together. It has appealing theoretical properties, including a connection to the set of points tendency to accept a good clustering partition. Yet, it is computationally expensive to compute exactly. In this paper, the notion of computing the coarseness using a guillotine partition approach is introduced, and efficient algorithms for computing this guillotine coarseness are presented: a top-down approach and a dynamic programming approach, both of them achieving polynomial time and space complexities. Finally, an even faster <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow></mrow></math></span> polynomial-time algorithm to compute a reduced version of the measurement named two-level guillotine coarseness is presented using geometric data structures for faster computations. These restrictions establish lower bounds for the general guillotine coarseness that allow the development of more efficient algorithms for computing it.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100503\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Computing the coarseness measure of a bicolored point set over guillotine partitions
The coarseness of a set of points in the plane colored red and blue is a measure of how well the points are mixed together. It has appealing theoretical properties, including a connection to the set of points tendency to accept a good clustering partition. Yet, it is computationally expensive to compute exactly. In this paper, the notion of computing the coarseness using a guillotine partition approach is introduced, and efficient algorithms for computing this guillotine coarseness are presented: a top-down approach and a dynamic programming approach, both of them achieving polynomial time and space complexities. Finally, an even faster polynomial-time algorithm to compute a reduced version of the measurement named two-level guillotine coarseness is presented using geometric data structures for faster computations. These restrictions establish lower bounds for the general guillotine coarseness that allow the development of more efficient algorithms for computing it.