一类非线性分式二维 Volterra 积分微分方程的数值技术

IF 1.4 Q2 MATHEMATICS, APPLIED
F. Afiatdoust , M.H. Heydari , M.M. Hosseini , M. Mohseni Moghadam
{"title":"一类非线性分式二维 Volterra 积分微分方程的数值技术","authors":"F. Afiatdoust ,&nbsp;M.H. Heydari ,&nbsp;M.M. Hosseini ,&nbsp;M. Mohseni Moghadam","doi":"10.1016/j.rinam.2024.100510","DOIUrl":null,"url":null,"abstract":"<div><div>The present study focuses on designing a multi-step technique, known as the block-by-block technique, to provide the numerical solution for a category of nonlinear fractional two-dimensional Volterra integro-differential equations. The proposed technique is a block-by-block method based on Romberg’s numerical integration formula, which simultaneously obtains highly accurate solutions at certain nodes without requiring initial starting values. The convergence analysis of the established method for the aforementioned equations is investigated using Gronwall’s inequality. Several numerical tests are presented to demonstrate the accuracy, speed, and good performance of the procedure.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100510"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical technique for a class of nonlinear fractional 2D Volterra integro-differential equations\",\"authors\":\"F. Afiatdoust ,&nbsp;M.H. Heydari ,&nbsp;M.M. Hosseini ,&nbsp;M. Mohseni Moghadam\",\"doi\":\"10.1016/j.rinam.2024.100510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study focuses on designing a multi-step technique, known as the block-by-block technique, to provide the numerical solution for a category of nonlinear fractional two-dimensional Volterra integro-differential equations. The proposed technique is a block-by-block method based on Romberg’s numerical integration formula, which simultaneously obtains highly accurate solutions at certain nodes without requiring initial starting values. The convergence analysis of the established method for the aforementioned equations is investigated using Gronwall’s inequality. Several numerical tests are presented to demonstrate the accuracy, speed, and good performance of the procedure.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100510\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是设计一种多步骤技术,即逐块技术,为一类非线性分式二维 Volterra 积分微分方程提供数值解。所提出的技术是一种基于罗姆伯格数值积分公式的逐块方法,无需初始起始值,即可在某些节点同时获得高精度解。利用 Gronwall 不等式对上述方程的收敛分析进行了研究。通过几个数值测试,证明了该程序的准确性、速度和良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical technique for a class of nonlinear fractional 2D Volterra integro-differential equations
The present study focuses on designing a multi-step technique, known as the block-by-block technique, to provide the numerical solution for a category of nonlinear fractional two-dimensional Volterra integro-differential equations. The proposed technique is a block-by-block method based on Romberg’s numerical integration formula, which simultaneously obtains highly accurate solutions at certain nodes without requiring initial starting values. The convergence analysis of the established method for the aforementioned equations is investigated using Gronwall’s inequality. Several numerical tests are presented to demonstrate the accuracy, speed, and good performance of the procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信