2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)最新文献

筛选
英文 中文
1-D electronic density of states for InAs/InP Quantum Dashes probed by scanning tunneling spectroscopy 扫描隧道光谱探测InAs/InP量子线的一维电子态密度
J. Girard, Konstantinos Papatryfonos, G. Rodary, C. David, F. Lelarge, A. Ramdane
{"title":"1-D electronic density of states for InAs/InP Quantum Dashes probed by scanning tunneling spectroscopy","authors":"J. Girard, Konstantinos Papatryfonos, G. Rodary, C. David, F. Lelarge, A. Ramdane","doi":"10.1109/ICIPRM.2016.7528791","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528791","url":null,"abstract":"Quantum Dashes (QDashes), some elongated and self-assembled semiconductor nanostructures are interesting candidates as building blocks for new laser devices with promising performances. To date, there was a lack of knowledge about the dimensionality of the confinement for carriers in such QDashes. We report on cross-sectional scanning tunneling microscopy and spectroscopy (X-STM/STS) performed on InAs(P)/InGaAsP/InP(001) QDashes, embedded in an optimized laser structure configuration. The active region consists of nine InAs(P) QDashes layers separated by InGaAsP barriers, sandwiched between a p-type and an n-type InP semiconductor. The STS measurements measured throughout the active region reveal a shift of the conduction band edges in agreement with built-in potential of the p-i-n junction. Furthermore we investigate the question of the dimensionality of the InAs(P) Q-Dashes. Local density of states measured on QDashes from layer to layer indicates a 1-D quantum-wire-like nature for these nanostructures whose squared wavefunctions were subsequently imaged by differential conductivity mapping.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117124446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and characterization of InGaAs fin structure high electron mobility transistors InGaAs翅片结构高电子迁移率晶体管的制备与表征
Chia‐Ming Chang, Li-Cheng Chang, C. Wu
{"title":"Fabrication and characterization of InGaAs fin structure high electron mobility transistors","authors":"Chia‐Ming Chang, Li-Cheng Chang, C. Wu","doi":"10.1109/ICIPRM.2016.7528649","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528649","url":null,"abstract":"The InGaAs planar and fin structure high electron mobility transistors (FinHEMTs) are demonstrated in this report. Compared with planar devices, threshold voltage (VT) of FinHEMT increases from -1.64 V to -1.04 V at VD = 2.0 V. On the other hand, sub-threshold swing (SS) decreases from 251.8 mV/decade to 88.4 mV/decade and drain induced barrier lowering (DIBL) reduces from 105.2mV/V to 52.6mV/V. A Silvaco TCAD is used to simulate band diagram of gate region to verify and explain the gate control mechanisms of FinHEMT. The simulation results indicate that band bending at metal and semiconductor interface, which is between etched fin sidewall and gate metal has significantly large influence on device on-off characteristics.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115128874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Widely tunable 1060-nm high-contrast grating VCSEL 宽可调1060nm高对比度光栅VCSEL
Kun Li, C. Chase, Y. Rao, C. Chang-Hasnain
{"title":"Widely tunable 1060-nm high-contrast grating VCSEL","authors":"Kun Li, C. Chase, Y. Rao, C. Chang-Hasnain","doi":"10.1109/ICIPRM.2016.7528539","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528539","url":null,"abstract":"We report monolithic, electrically-pumped tunable 1060-nm VCSELs with a high-contrast grating metastructure as the highly reflective tunable mirror. Single-mode lasing with CW operation is demonstrated up to 85°C providing output power larger than 1.3 mW at room temperature. A continuous tuning range of 35 nm is achieved with microelectromechanical actuation of the high-contrast grating mirror, showing a 3-dB bandwidth of 667 kHz in the tuning response. This is promising for the realization of a high-speed and widely wavelength tunable source with cost-effective fabrication processes, for applications in optical coherence tomography, LIDAR, and wavelength-division-multiplexed optical communication.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"129 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124246393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Electronic structures calculation of Si1−xSnx compound alloy using interacting quasi-band model 用相互作用准带模型计算Si1−xSnx复合合金电子结构
M. Oda, Yukina Kuroda, Ayaka Kishi, Y. Shinozuka
{"title":"Electronic structures calculation of Si1−xSnx compound alloy using interacting quasi-band model","authors":"M. Oda, Yukina Kuroda, Ayaka Kishi, Y. Shinozuka","doi":"10.1109/ICIPRM.2016.7528635","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528635","url":null,"abstract":"We investigate energy band structures of Si<sub>1-x</sub>Sn<sub>x</sub> compound alloy in zincblende structure using interacting qasi-band (IQB) model. The previous IQB model has been developed for three element compound semiconductors such as A<sub>1-x</sub>B<sub>x</sub>D. To apply IQB for Si<sub>1-x</sub>Sn<sub>x</sub>, we here extend the IQB for four element compounds and calculate the electronic structures of virtual alloy as Si<sub>1-x</sub>Sn<sub>x</sub>Si<sub>1-y</sub>Sn<sub>y</sub>, where x=y. Diagonalizing a 20 × 20 non-Hermitian Hamiltonian matrix using sp3s* tight binding theory, we obtain quasi-band structures for several x. Comparing the band structures, we reveal that indirect-direct gap crossover in Si<sub>1-x</sub>Sn<sub>x</sub> occurs around x = 0.39.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117114307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Band alignment study and plasmon generation at dual ion-beam sputtered Ga:ZnO/ Ga:MgZnO heterojunction interface 双离子束溅射Ga:ZnO/ Ga:MgZnO异质结界面带对准研究及等离子体激元产生
V. Awasthi, Vivek Garg, B. S. Sengar, Rohit Singh, S. Pandey, Shailendra Kumar, C. Mukherjee, S. Mukherjee
{"title":"Band alignment study and plasmon generation at dual ion-beam sputtered Ga:ZnO/ Ga:MgZnO heterojunction interface","authors":"V. Awasthi, Vivek Garg, B. S. Sengar, Rohit Singh, S. Pandey, Shailendra Kumar, C. Mukherjee, S. Mukherjee","doi":"10.1109/ICIPRM.2016.7528636","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528636","url":null,"abstract":"A flat band offset at 3 atomic% Ga-doped ZnO (GZO)/1 atomic% Ga-doped Mg0.05Zn0.95O (GMZO) interface is obtained with valence and conduction band offset values of -0.045 and -0.065 eV, respectively. The materials are grown by dual ion-beam sputtering (DIBS) system, and the values of band offsets at the interface are calculated by ultraviolet photoelectron spectroscopy measurement. It is observed that the band offset can be further tuned by suitable band-gap engineering by changing the elemental composition of Mg and Ga in ZnO or by altering DIBS growth parameters. Moreover, generation of plasmons in individual GZO and GMZO films due to the formation of metal and metal oxide nanoclusters are observed. This is promising in terms of increasing the efficiency of the solar cell by increasing optical path length in the absorbing layer by light scattering and trapping mechanism.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117229629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Auger recombination in InAs: Role of spin-orbit coupling and phonons InAs中的俄歇复合:自旋轨道耦合和声子的作用
Jimmy‐Xuan Shen, D. Steiauf, E. Kioupakis, C. G. Van de Walle
{"title":"Auger recombination in InAs: Role of spin-orbit coupling and phonons","authors":"Jimmy‐Xuan Shen, D. Steiauf, E. Kioupakis, C. G. Van de Walle","doi":"10.1109/ICIPRM.2016.7528804","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528804","url":null,"abstract":"Indium arsenide (InAs), with a low band gap of 0.35 eV, is used in long-wavelength photo-detectors, lasers, photovoltaic junctions and a host of other semiconductor devices. Very high Auger recombination coefficients (ranging from 10<sup>-27</sup>~10<sup>-26</sup> cm<sup>6</sup>s<sup>-1</sup>) have been measured in this material. Here, we present first-principles-based investigations of Auger recombination processes in InAs. For the direct process, we calculate an Auger coefficient of 1.6 × 10<sup>-27</sup> cm<sup>6</sup>s<sup>-1</sup>; for the indirect phonon-assisted process, the coefficient is 1.7 × 10<sup>-29</sup> cm<sup>6</sup>s<sup>-1</sup>. Our results elucidate the role of strong spin-orbit coupling: in InAs, the spin-orbit splitting of the valence band is close in magnitude to the band gap, allowing for efficient excitation of Auger holes and leading to a significant enhancement of the Auger recombination coefficient.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127265168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth and doping control of Ge/Si and Si/Ge core-shell nanowires Ge/Si和Si/Ge核壳纳米线的生长与掺杂控制
K. Nishibe, W. Jevasuwan, M. Mitome, Y. Bando, Zhong Lin Wang, N. Fukata
{"title":"Growth and doping control of Ge/Si and Si/Ge core-shell nanowires","authors":"K. Nishibe, W. Jevasuwan, M. Mitome, Y. Bando, Zhong Lin Wang, N. Fukata","doi":"10.1109/ICIPRM.2016.7528645","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528645","url":null,"abstract":"Selective doping and band-offset in core-shell nanowire (NW) structures using germanium (Ge)/ silicon (Si) can realize a type of high electron mobility transistor (HEMT) structure in one-dimensional NWs by separating the carrier transport region from the impurity-doped region. Precise analysis, using Raman spectroscopy of the Ge optical phonon peak, can distinguish three effects: the phonon confinement effect, the stress effect due to the heterostructures, and the Fano effect. Using these techniques, we obtained conclusive evidence of hole gas accumulation in Ge/Si core-shell NWs. The control of hole gas concentration can be realized by changing the B doping concentration in the Si shell.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127528475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A physical based equivalent circuit modeling approach for ballasted InP DHBT multi-finger devices at millimeter-wave frequencies 毫米波频率下有碴InP DHBT多指器件的物理等效电路建模方法
V. Midili, M. Squartecchia, T. Johansen, V. Nodjiadjim, M. Riet, J. Dupuy, A. Konczykowska
{"title":"A physical based equivalent circuit modeling approach for ballasted InP DHBT multi-finger devices at millimeter-wave frequencies","authors":"V. Midili, M. Squartecchia, T. Johansen, V. Nodjiadjim, M. Riet, J. Dupuy, A. Konczykowska","doi":"10.1109/ICIPRM.2016.7528575","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528575","url":null,"abstract":"Multifinger InP DHBTs can be designed with a ballasting resistor to improve power capability. However accurate modeling is needed to predict high frequency behavior of the device. This paper presents two distinct modeling approaches: one based on EM simulations and one based on a physical equivalent circuit description. In the first approach, the EM simulations of contact pads and ballasting network are combined with the small-signal model of the intrinsic device. In the second approach, the ballasting network is modeled with lumped components derived from physical analysis of the layout and then combined with EM simulated contact pads and with the device model. The models are validated against S-parameters measurements of real devices up to 65 GHz showing good agreement in terms of maximum available gain. In addition, a MAG of 2-4 dB at 170 GHz shows that ballasted devices can be employed for power amplifiers in D band.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125112429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Local distribution of the material composition in the V-defect region of HgCdTe epitaxial films HgCdTe外延薄膜v型缺陷区材料成分局部分布
V. Novikov, D. Grigoryev, D. Bezrodnyy, S. Dvoretsky, M. Yakushev
{"title":"Local distribution of the material composition in the V-defect region of HgCdTe epitaxial films","authors":"V. Novikov, D. Grigoryev, D. Bezrodnyy, S. Dvoretsky, M. Yakushev","doi":"10.1109/ICIPRM.2016.7528604","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528604","url":null,"abstract":"In this paper the local distribution of the material composition in the V-defect region of HgCdTe epitaxial films is investigated. The local composition distribution is studied by the Kelvin Force Probe Microscopy method and scanning electron microscopy with energy dispersive X-ray analysis. It is demonstrated that in the V-defect region of a Hg1-xCdxTe epitaxial film inhomogeneous distribution of the material component composition is observed. Analysis of the obtained experimental data shows that V-defects are distinguished by an increased mercury content.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"46 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125901047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RTD-based reconfigurable logic gates for programmable logic array applications 可编程逻辑阵列应用的基于rtd的可重构逻辑门
Donghyeok Bae, Jaehong Park, Maengkyu Kim, Y. Jeong, Kyounghoon Yang
{"title":"RTD-based reconfigurable logic gates for programmable logic array applications","authors":"Donghyeok Bae, Jaehong Park, Maengkyu Kim, Y. Jeong, Kyounghoon Yang","doi":"10.1109/ICIPRM.2016.7528573","DOIUrl":"https://doi.org/10.1109/ICIPRM.2016.7528573","url":null,"abstract":"Summary form only given. Resonant-tunneling-diode (RTD) based reconfigurable logic gates have been designed and fabricated for RTD-based programmable logic array (PLA) applications. As PLA building blocks, two reconfigurable logic gates with three input terminals are proposed. The implemented gates show the reconfigurable functions of AND, OR, Majority, NOT, XOR, XNOR and 3-input XOR exploiting threshold characteristics of the RTD monostable-bistable transition logic element (MOBILE). The operation of the fabricated gates is successfully confirmed up to the clock frequency of 5 GHz. As for the full-adder topology, the number of devices in the proposed gate-based full-adder is less than a half of that in the conventional CMOS full-adder topology.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126049066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信