{"title":"Research progress on the effect of sperm chromatin integrity on function and its detection methods.","authors":"Daiyuan Liu, Zhao-Hui Zhang, Xian-Jiang Kang","doi":"10.16288/j.yczz.24-106","DOIUrl":"https://doi.org/10.16288/j.yczz.24-106","url":null,"abstract":"<p><p>Sperm chromatin not only carries genetic information such as paternal DNA, but also carries structural proteins, epigenetic information, and higher-order chromatin structures (such as matrix attachment regions and telomeres), etc. These information play an important role in embryonic development. This article mainly reviews the effects of these different information carried by sperm chromatin on sperm function and embryonic development and the research progress of related detection methods, in order to provide a theoretical basis and scientific diagnosis and treatment strategies for the etiology screening of clinical infertility, embryo arrest and recurrent miscarriage, so as to improve the pregnancy outcomes of natural conception and assisted reproduction. Keywords: sperm chromatin; epigenetics; sperm DNA damage; sperm function; higher-order chromatin structures.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 7","pages":"511-529"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A case study of Duchenne muscular dystrophy caused by Alu element insertion in <i>DMD</i> gene and analysis of its gray-hair symptoms.","authors":"Hui Li, Ru-Yi Zhang, Chang-Ye Li, Xiao-Lin Zhang, Qing-Yin Zheng, Xiu-Zhen Liu","doi":"10.16288/j.yczz.24-020","DOIUrl":"10.16288/j.yczz.24-020","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a severe X-linked recessive genetic disorder caused by mutations in the <i>DMD</i> gene, which leads to a deficiency of the dystrophin protein. The main mutation types of this gene include exon deletions and duplications, point mutations, and insertions. These mutations disrupt the normal expression of dystrophin, ultimately leading to the disease. In this study, we reported a case of DMD caused by an insertion mutation in exon 59 (E59) of the <i>DMD</i> gene. The affected child exhibited significant abnormalities in related biochemical markers, early symptoms of DMD, and multiple gray hair. His mother and sister were carriers with slightly abnormal biochemical markers. The mother had mild clinical symptoms, while the sister had no clinical symptoms. Other family members were genetically and physically normal. Sequencing and sequence alignment revealed that the inserted fragment was an Alu element from the AluYa5 subfamily. This insertion produced two stop codons and a polyadenylate (polyA) tail. To understand the impact of this insertion on the <i>DMD</i> gene and its association with clinical symptoms, exonic splicing enhancer (ESE) prediction indicated that the insertion did not affect the splicing of E59. Therefore, we speculated that the insertion sequence would be present in the mRNA sequence of the <i>DMD</i> gene. The two stop codons and polyA tail likely terminate translation, preventing the production of functional dystrophin protein, which may be the mechanism leading to DMD. In addition to typical DMD symptoms, the child also exhibited premature graying of hair. This study reports, for the first time, a case of DMD caused by the insertion of an Alu element into the coding region of the <i>DMD</i> gene. This finding provides clues for studying gene mutations induced by Alu sequence insertion and expands the understanding of <i>DMD</i> gene mutations.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 7","pages":"570-580"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of centromere protein Fta2 phosphorylation during meiosis.","authors":"Zi-Han Ni, Yu Min, Ling-Ling Ma, Yoshinori Watanabe","doi":"10.16288/j.yczz.24-038","DOIUrl":"10.16288/j.yczz.24-038","url":null,"abstract":"<p><p>During meiosis, defects in cohesin localization within the centromere region can result in various diseases. Accurate cohesin localization depends on the Mis4-Ssl3 loading complex. Although it is known that cohesin completes the loading process with the help of the loading complex, the mechanisms underlying its localization in the centromere region remain unclear. Previous studies suggest cohesin localization in the centromere is mediated by phosphorylation of centromeric proteins. In this study, we focused on the Fta2 protein, a component of the Sim4 centromere protein complex. Using bioinformatics methods, potential phosphorylation sites were identified, and <i>fta2-9A</i> and <i>fta2-9D</i> mutants were constructed in <i>Schizosaccharomyces pombe</i>. The phenotypes of these mutants were characterized through testing thiabendazole (TBZ) sensitivity and fluorescent microscopy localization. Results indicated that Fta2 phosphorylation did not impact mitosis but affected chromosome segregation during meiosis. This study suggests that Fta2 phosphorylation is vital for meiosis and may be related to the specific localization of cohesin during this process.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 7","pages":"552-559"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Il34 rescues metronidazole-induced impairment of spinal cord regeneration in zebrafish central nervous system.","authors":"Ji-Xiang Liu, Si-Ting Lai, Jing Bai, Jin Xu","doi":"10.16288/j.yczz.24-083","DOIUrl":"10.16288/j.yczz.24-083","url":null,"abstract":"<p><p>Metronidazole (MTZ), a commonly used anti-infective drug in clinical practice, has also been employed as a prodrug in cell-targeted ablation systems in scientific research, exhibiting significant application value. However, it has been demonstrated that MTZ can induce neurotoxic symptoms to some extent during its use, and there is currently a lack of effective means to circumvent its toxicity in both clinical and research settings, which limits its application. Therefore, exploring the specific mechanisms underlying MTZ-induced neurotoxic symptoms and elucidating countermeasures will enhance the practical value of MTZ. In this study, using a zebrafish spinal cord injury regeneration model, we confirmed that MTZ neurotoxicity leads to impaired axon regeneration in the central nervous system. By overexpressing <i>il34</i> in the central nervous system of zebrafish, we eliminated the inhibitory effect of MTZ on axonal regeneration and demonstrated that the pro-regenerative effect against MTZ neurotoxicity is not caused by excessive macrophages/microglia chemoattracted by interleukin 34(Il34). Transcriptome sequencing analysis and GO enrichment analysis of differentially expressed genes between groups revealed that Il34 may counteract MTZ neurotoxicity and promote spinal cord injury repair through biological processes that enhance cellular adhesion and cell location. In summary, our work uncovers a possible cause of MTZ neurotoxicity and provides a new perspective for eliminating MTZ toxicity.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 6","pages":"478-489"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress on the role of LIN28A/B in tumor development and progression.","authors":"Yi-Wen Zhang, Qin Huang, Yan-Yun Wu, Yue Sun, Yong-Long Wei","doi":"10.16288/j.yczz.24-056","DOIUrl":"10.16288/j.yczz.24-056","url":null,"abstract":"<p><p>LIN28A and its homolog LIN28B are highly conserved RNA-binding proteins that play important roles in early embryonic development, somatic cell reprogramming, metabolism and tumorigenesis. LIN28A/B are highly expressed in a variety of malignant tumors such as breast cancer. They play important roles in the initiation, maintenance, and metastasis of tumors and are associated with poor prognosis. Previous studies have shown that the main regulatory mechanisms of LIN28A/B include let-7s dependent ways and let-7s independent ways, such as directly targeting mRNA. In this review, we summarize the function and molecular regulatory mechanisms of LIN28A/B in malignant tumors such as liver cancer, breast cancer and colorectal cancer, in order to provide references for further exploring the function and mechanism of LIN28A/B and their possible roles in clinical applications.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 6","pages":"452-465"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Yang, Guo-Juan Shi, Ang-Hui Peng, Qing-Bo Xu, Rui-Qi Wang, Lei Xue, Xin-Yang Yu, Yi-Hao Sun
{"title":"Tip60-FOXO regulates JNK signaling mediated apoptosis in <i>Drosophila</i>.","authors":"Jian Yang, Guo-Juan Shi, Ang-Hui Peng, Qing-Bo Xu, Rui-Qi Wang, Lei Xue, Xin-Yang Yu, Yi-Hao Sun","doi":"10.16288/j.yczz.24-105","DOIUrl":"10.16288/j.yczz.24-105","url":null,"abstract":"<p><p>The JNK signaling pathway plays crucial roles in various physiological processes, including cell proliferation, differentiation, migration, apoptosis, and stress response. Dysregulation of this pathway is closely linked to the onset and progression of numerous major diseases, such as developmental defects and tumors. Identifying and characterizing novel components of the JNK signaling pathway to enhance and refine its network hold significant scientific and clinical importance for the prevention and treatment of associated cancers. This study utilized the model organism <i>Drosophila</i> and employed multidisciplinary approaches encompassing genetics, developmental biology, biochemistry, and molecular biology to investigate the interplay between Tip60 and the JNK signaling pathway, and elucidated its regulatory mechanisms. Our findings suggest that loss of Tip60 acetyltransferase activity results in JNK signaling pathway activation and subsequent induction of JNK-dependent apoptosis. Genetic epistasis analysis reveals that Tip60 acts downstream of JNK, paralleling with the transcription factor FOXO. The biochemical results confirm that Tip60 can bind to FOXO and acetylate it. Introduction of human Tip60 into <i>Drosophila</i> effectively mitigates apoptosis induced by JNK signaling activation, underscoring conserved regulatory role of Tip60 in the JNK signaling pathway from <i>Drosophila</i> to humans. This study further enhances our understanding of the regulatory network of the JNK signaling pathway. By revealing the role and mechanism of Tip60 in JNK-dependent apoptosis, it unveils new insights and potential therapeutic avenues for preventing and treating associated cancers.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 6","pages":"490-501"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bao-Xia Ma, Sen Yang, Ming Lyu, Yu-Ren Wang, Li-Ye Chang, Yi-Fan Han, Jian-Gang Wang, Yang Guo, Kun Xu
{"title":"Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing.","authors":"Bao-Xia Ma, Sen Yang, Ming Lyu, Yu-Ren Wang, Li-Ye Chang, Yi-Fan Han, Jian-Gang Wang, Yang Guo, Kun Xu","doi":"10.16288/j.yczz.23-273","DOIUrl":"10.16288/j.yczz.23-273","url":null,"abstract":"<p><p>Gene knock-in in mammalian cells usually uses homology-directed repair (HDR) mechanism to integrate exogenous DNA template into the target genome site. However, HDR efficiency is often low, and the co-localization of exogenous DNA template and target genome site is one of the key limiting factors. To improve the efficiency of HDR mediated by CRISPR/Cas9 system, our team and previous studies fused different adaptor proteins with SpCas9 protein and expressed them. By using their characteristics of binding to specific DNA sequences, many different CRISPR/SpCas9 donor adapter gene editing systems were constructed. In this study, we used them to knock-in <i>eGFP</i> gene at the 3'-end of the terminal exon of <i>GAPDH</i> and <i>ACTB</i> genes in HEK293T cells to facilitate a comparison and optimization of these systems. We utilized an optimized donor DNA template design method, validated the knock-in accuracy via PCR and Sanger sequencing, and assessed the efficiency using flow cytometry. The results showed that the fusion of yGal4BD, hGal4BD, hLacI, hTHAP11 as well as N57 and other adaptor proteins with the C-terminus of SpCas9 protein had no significant effect on its activity. At the <i>GAPDH</i> site, the donor adapter systems of SpCas9 fused with yGal4BD, hGal4BD, hLacI and hTHAP11 significantly improved the knock-in efficiency. At the <i>ACTB</i> site, SpCas9 fused with yGal4BD and hGal4BD significantly improved the knock-in efficiency. Furthermore, increasing the number of BS in the donor DNA template was beneficial to enhance the knock-in efficiency mediated by SpCas9-hTHAP11 system. In conclusion, this study compares and optimizes multiple CRISPR/Cas9 donor adapter gene editing systems, providing valuable insights for future gene editing applications.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 6","pages":"466-477"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ssu72 phosphatase deficiency leads to spindle crossing during the second meiotic division process.","authors":"Jing-Liang Yan, Ling-Ling Ma, Yoshinori Watanabe","doi":"10.16288/j.yczz.24-047","DOIUrl":"10.16288/j.yczz.24-047","url":null,"abstract":"<p><p>Ssu72 is a component of the yeast cleavage/polyadenylation factor (CPF) complex, which catalyzes the dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II at S5-P and S7-P. It has been shown that Ssu72 phosphatase is involved in regulating chromosome cohesion during mitosis. To further clarify whether Ssu72 phosphatase affects chromosome separation during meiotic division in <i>Schizosaccharomyces pombe</i>, we utilized green fluorescent protein (GFP) to label centromeres and red fluorescent protein to label microtubule protein Atb2. The entire meiotic chromosome separation process of <i>ssu72∆</i> cells was observed in real-time under fluorescence microscope. It was found that two spindles of <i>ssu72∆</i> cells crossed during the metaphase and anaphase of the second meiotic division, and this spindle crossing led to a new type of spore defect distribution pattern. The results of this study can provide important reference significance for studying the roles of phosphatase Ssu72 in higher organisms.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 6","pages":"502-508"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The roles of branched-chain amino acids metabolism in tumorigenesis and progression.","authors":"Shen Yuan, Li Jin-Tao, Yin Miao, Lei Qun-Ying","doi":"10.16288/j.yczz.24-095","DOIUrl":"10.16288/j.yczz.24-095","url":null,"abstract":"<p><p>Branched-chain amino acids (BCAAs), including leucine, valine, and isoleucine, play crucial roles in regulating metabolic balance and maintaining physiological functions in the body. Extensive studies have been focused on their implications in obesity, diabetes, and cardiovascular diseases. Nevertheless, accumulating evidence suggests that BCAAs metabolism also plays significant roles in tumorigenesis and progression. In this review, we overview recent progress of the study on BCAAs metabolism including its relationship with epigenetic regulation. Particularly, we discuss the metabolic reprogramming and metabolic sensing of BCAAs and its intermediate metabolites in tumor cells and microenvironment to decipher their functions. An enhanced understanding of the roles and mechanism of BCAAs metabolism in tumorigenesis and progression will contribute to development of novel therapeutic strategies against tumor.</p>","PeriodicalId":35536,"journal":{"name":"Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji","volume":"46 6","pages":"438-451"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}