The role of cis-regulatory elements in the determination and transformation of muscle fiber type in animal skeletal muscles.

Q3 Medicine
遗传 Pub Date : 2025-04-01 DOI:10.16288/j.yczz.24-239
Jing Luo, Kai-Ying Lei, Song Shi, Xiao-Li Xu, Xue-Liang Sun, Mei-Jun Song, Hong-Ping Zhang, Li Li
{"title":"The role of <i>cis</i>-regulatory elements in the determination and transformation of muscle fiber type in animal skeletal muscles.","authors":"Jing Luo, Kai-Ying Lei, Song Shi, Xiao-Li Xu, Xue-Liang Sun, Mei-Jun Song, Hong-Ping Zhang, Li Li","doi":"10.16288/j.yczz.24-239","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle fibers are the fundamental units of skeletal muscle. Based on contraction speed and metabolic properties, muscle fibers are categorized into fast-twitch and slow-twitch fibers. Further subdivision based on MyHC gene isoforms identifies them as type I, IIA, IIB, and IIX fibers. There is potential for interconversion among these muscle fiber types. The proportions of different muscle fibers determine muscle functional properties and affect muscle quality. Compared with muscles mainly harboring fast-twitch fibers, muscles predominantly composed of slow-twitch fibers are characterized by enhanced water-holding capacity, tenderness, and superior flavor. During the formation and transformation of animal skeletal muscle fibers, the expression of a series of muscle-specific genes is precisely regulated by <i>cis</i>-regulatory elements. These <i>cis</i>-regulatory elements achieve precise regulation of the target genes through interactions with transcription factors and other regulatory proteins, thereby ensuring the formation and transformation of muscle fibers. Based on introducing the types and characteristics of muscle fibers, we summarize and prospect the role of the transcription factors and <i>cis</i>-regulatory elements in the formation and transformation of fast-twitch and slow-twitch muscle fibers in livestock. The aim of this review is to deepen the understanding of the relationship between gene expression regulation and muscle fiber diversity, and to provide theoretical support for the improvement of meat quality in livestock.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"437-447"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle fibers are the fundamental units of skeletal muscle. Based on contraction speed and metabolic properties, muscle fibers are categorized into fast-twitch and slow-twitch fibers. Further subdivision based on MyHC gene isoforms identifies them as type I, IIA, IIB, and IIX fibers. There is potential for interconversion among these muscle fiber types. The proportions of different muscle fibers determine muscle functional properties and affect muscle quality. Compared with muscles mainly harboring fast-twitch fibers, muscles predominantly composed of slow-twitch fibers are characterized by enhanced water-holding capacity, tenderness, and superior flavor. During the formation and transformation of animal skeletal muscle fibers, the expression of a series of muscle-specific genes is precisely regulated by cis-regulatory elements. These cis-regulatory elements achieve precise regulation of the target genes through interactions with transcription factors and other regulatory proteins, thereby ensuring the formation and transformation of muscle fibers. Based on introducing the types and characteristics of muscle fibers, we summarize and prospect the role of the transcription factors and cis-regulatory elements in the formation and transformation of fast-twitch and slow-twitch muscle fibers in livestock. The aim of this review is to deepen the understanding of the relationship between gene expression regulation and muscle fiber diversity, and to provide theoretical support for the improvement of meat quality in livestock.

顺式调控元件在动物骨骼肌肌纤维类型的确定和转化中的作用。
肌纤维是骨骼肌的基本单位。根据收缩速度和代谢特性,肌纤维分为快肌纤维和慢肌纤维。根据MyHC基因同工型进一步细分为I型、IIA型、IIB型和IIX型纤维。这些肌纤维类型之间有相互转化的潜力。不同肌纤维的比例决定肌肉的功能特性,影响肌肉质量。与主要含有快肌纤维的肌肉相比,主要由慢肌纤维组成的肌肉具有更强的保水性、柔软性和更好的风味。在动物骨骼肌纤维的形成和转化过程中,一系列肌肉特异性基因的表达受到顺式调控元件的精确调控。这些顺式调控元件通过与转录因子和其他调控蛋白的相互作用,实现对靶基因的精确调控,从而保证肌纤维的形成和转化。在介绍肌纤维的种类和特点的基础上,对家畜快肌纤维和慢肌纤维形成和转化过程中转录因子和顺式调控元件的作用进行了总结和展望。本文旨在加深对基因表达调控与肌纤维多样性关系的认识,为提高畜禽肉质提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍: Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信