Analysis of structure and function of phage community occurring in the abnormal fermentation of vinegar mash through virome sequencing.

Q3 Medicine
遗传 Pub Date : 2025-04-01 DOI:10.16288/j.yczz.24-226
Jia-Wen Ma, Xin-le Liang
{"title":"Analysis of structure and function of phage community occurring in the abnormal fermentation of vinegar mash through virome sequencing.","authors":"Jia-Wen Ma, Xin-le Liang","doi":"10.16288/j.yczz.24-226","DOIUrl":null,"url":null,"abstract":"<p><p>In order to investigate the cues, which cause abnormal fermentation during the traditional Zhejiang rosy rice vinegar production, here, the Illumina Novaseq sequencing platform is adopted to decipher the abnormal phage community organization, structure, and related function annotation. The results show that the dominant viral families from the abnormal and the normal fermentation vinegar mash are inconsistency on known taxonomic identification information. Population network analysis and PCA (principal component analysis) indicate that the composition and structure of phage communities differ significantly between abnormal and normal fermentation vinegar mash. Only 3.29% VCs (viral clusters) simultaneously contain vOTUs (viral operational taxonomic units) from both fermentation situation. The abnormal phageome displays high network heterogeneity and dominant phage species at the genus level. Accompanied by the widespread distribution of phage-derived hydrolases that target bacterial cell wall, the lower proportion of lysogenic phages contributes to the phages of abnormal fermentation vinegar mash more inclined to lyse the hosts. Furthermore, the predicted bacterial host community coupling with the aberrant phage community is quite different from that in the normal vinegar fermentation. In conclusion, the abnormal structure and function of the phage community constitutes one of the primary reasons for the failure of traditional rosy vinegar fermentation. Phageome research has opened up a new approach for analyzing the causes of abnormal fermentation in traditional fermented foods as well as for regulating and transforming microbial communities.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"489-498"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In order to investigate the cues, which cause abnormal fermentation during the traditional Zhejiang rosy rice vinegar production, here, the Illumina Novaseq sequencing platform is adopted to decipher the abnormal phage community organization, structure, and related function annotation. The results show that the dominant viral families from the abnormal and the normal fermentation vinegar mash are inconsistency on known taxonomic identification information. Population network analysis and PCA (principal component analysis) indicate that the composition and structure of phage communities differ significantly between abnormal and normal fermentation vinegar mash. Only 3.29% VCs (viral clusters) simultaneously contain vOTUs (viral operational taxonomic units) from both fermentation situation. The abnormal phageome displays high network heterogeneity and dominant phage species at the genus level. Accompanied by the widespread distribution of phage-derived hydrolases that target bacterial cell wall, the lower proportion of lysogenic phages contributes to the phages of abnormal fermentation vinegar mash more inclined to lyse the hosts. Furthermore, the predicted bacterial host community coupling with the aberrant phage community is quite different from that in the normal vinegar fermentation. In conclusion, the abnormal structure and function of the phage community constitutes one of the primary reasons for the failure of traditional rosy vinegar fermentation. Phageome research has opened up a new approach for analyzing the causes of abnormal fermentation in traditional fermented foods as well as for regulating and transforming microbial communities.

利用病毒体测序技术分析醋醪异常发酵过程中噬菌体群落的结构和功能。
为了探究浙江传统玫瑰色米醋生产过程中导致异常发酵的线索,本文采用Illumina Novaseq测序平台对异常噬菌体群落组织、结构进行解码,并进行相关功能注释。结果表明,异常发酵醋醪与正常发酵醋醪的优势病毒科在已知的分类鉴定信息上不一致。种群网络分析和主成分分析表明,正常发酵与异常发酵醋醪中噬菌体群落的组成和结构存在显著差异。只有3.29%的vc(病毒簇)同时含有两种发酵情况下的vOTUs(病毒操作分类单位)。异常噬菌体在属水平上表现出高度的网络异质性和优势噬菌体种。伴随着以细菌细胞壁为靶点的噬菌体衍生的水解酶的广泛分布,较低的溶原性噬菌体比例使得异常发酵的醋醪噬菌体更倾向于裂解宿主。此外,预测的与异常噬菌体群落耦合的细菌宿主群落与正常的醋发酵有很大的不同。综上所述,噬菌体群落的结构和功能异常是传统玫瑰红醋发酵失败的主要原因之一。噬菌体的研究为分析传统发酵食品中异常发酵的原因、调控和转化微生物群落开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍: Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信