{"title":"Y染色体造血镶嵌缺失:从人群队列到致病机制。","authors":"Li-Na Zhu, Xu Wang, Xi-Han Guo","doi":"10.16288/j.yczz.24-211","DOIUrl":null,"url":null,"abstract":"<p><p>Mosaic loss of Y Chromosome (mLOY) refers to genetic mosaicism in males where some somatic cells have lost the Y chromosome (ChrY) while other cells remain their ChrY. mLOY is primarily found in the blood, not only because blood cells are easily accessible, but also because hematopoietic stem cells with LOY mutation gain competitive advantages, therefore producing a large number of LOY-positive blood cells via clonal hematopoiesis. Due to the specific structures, human ChrY is prone to be missegregated during mitosis, and driving by the germline variants, environmental insults and aging microenvironments, mLOY becomes the most commonly acquired age-related mutation in male genomes. Population-based cohort studies have shown that men with a certain degree of mLOY is associated with significantly reduced life expectancy and increased risks of cancer, Alzheimer's disease, cardiovascular diseases and among others. Recent studies using mouse models have further demonstrated that mLOY is a driving factor of leukemia and cardiovascular diseases. These findings suggest that mLOY not only provides a common genetic explanation for the occurrence of many chronic diseases in men, but also provides a new kernel for studying sex differences in human lifespan and disease risk. Here, we briefly summarize the findings from the population-based cohort studies on clonal hematopoiesis driven by LOY. Subsequently we sort out the risk factors of mLOY, methods for detecting mLOY and developing mLOY mouse models, and the potential mechanisms of mLOY in promoting a myriad of chronic diseases. Finally, we provide our own forward-looking perspectives for the future challenges and opportunities in mLOY. The findings from this review provide references for studying the biological role of Y chromosome and sex difference of chronic diseases.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 4","pages":"409-427"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hematopoietic mosaic loss of Y chromosome: from population cohorts to pathogenic mechanisms.\",\"authors\":\"Li-Na Zhu, Xu Wang, Xi-Han Guo\",\"doi\":\"10.16288/j.yczz.24-211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mosaic loss of Y Chromosome (mLOY) refers to genetic mosaicism in males where some somatic cells have lost the Y chromosome (ChrY) while other cells remain their ChrY. mLOY is primarily found in the blood, not only because blood cells are easily accessible, but also because hematopoietic stem cells with LOY mutation gain competitive advantages, therefore producing a large number of LOY-positive blood cells via clonal hematopoiesis. Due to the specific structures, human ChrY is prone to be missegregated during mitosis, and driving by the germline variants, environmental insults and aging microenvironments, mLOY becomes the most commonly acquired age-related mutation in male genomes. Population-based cohort studies have shown that men with a certain degree of mLOY is associated with significantly reduced life expectancy and increased risks of cancer, Alzheimer's disease, cardiovascular diseases and among others. Recent studies using mouse models have further demonstrated that mLOY is a driving factor of leukemia and cardiovascular diseases. These findings suggest that mLOY not only provides a common genetic explanation for the occurrence of many chronic diseases in men, but also provides a new kernel for studying sex differences in human lifespan and disease risk. Here, we briefly summarize the findings from the population-based cohort studies on clonal hematopoiesis driven by LOY. Subsequently we sort out the risk factors of mLOY, methods for detecting mLOY and developing mLOY mouse models, and the potential mechanisms of mLOY in promoting a myriad of chronic diseases. Finally, we provide our own forward-looking perspectives for the future challenges and opportunities in mLOY. The findings from this review provide references for studying the biological role of Y chromosome and sex difference of chronic diseases.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":\"47 4\",\"pages\":\"409-427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.24-211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
Y染色体镶嵌缺失(Mosaic loss of Y Chromosome, mLOY)是指雄性染色体的镶嵌现象,即一些体细胞失去了Y染色体,而另一些细胞保留了Y染色体。mLOY主要存在于血液中,这不仅是因为血细胞容易获得,而且由于LOY突变的造血干细胞获得竞争优势,因此通过克隆造血产生大量LOY阳性血细胞。由于特殊的结构,人类ChrY在有丝分裂过程中容易发生错分离,并且在种系变异、环境损伤和衰老微环境的驱动下,mLOY成为男性基因组中最常见的获得性年龄相关突变。基于人群的队列研究表明,患有一定程度mLOY的男性与预期寿命显著缩短以及患癌症、阿尔茨海默病、心血管疾病等疾病的风险增加有关。最近的小鼠模型研究进一步证明mLOY是白血病和心血管疾病的驱动因子。这些发现表明,mLOY不仅为男性许多慢性疾病的发生提供了共同的遗传解释,而且为研究人类寿命和疾病风险的性别差异提供了新的内核。在这里,我们简要总结了基于人群的LOY驱动的克隆造血队列研究的结果。随后,我们梳理了mLOY的危险因素,mLOY的检测方法和mLOY小鼠模型的建立,以及mLOY促进多种慢性疾病的潜在机制。最后,我们对mLOY未来的挑战和机遇提出了自己的前瞻性观点。本文的研究结果为研究Y染色体的生物学作用和慢性疾病的性别差异提供了参考。
Hematopoietic mosaic loss of Y chromosome: from population cohorts to pathogenic mechanisms.
Mosaic loss of Y Chromosome (mLOY) refers to genetic mosaicism in males where some somatic cells have lost the Y chromosome (ChrY) while other cells remain their ChrY. mLOY is primarily found in the blood, not only because blood cells are easily accessible, but also because hematopoietic stem cells with LOY mutation gain competitive advantages, therefore producing a large number of LOY-positive blood cells via clonal hematopoiesis. Due to the specific structures, human ChrY is prone to be missegregated during mitosis, and driving by the germline variants, environmental insults and aging microenvironments, mLOY becomes the most commonly acquired age-related mutation in male genomes. Population-based cohort studies have shown that men with a certain degree of mLOY is associated with significantly reduced life expectancy and increased risks of cancer, Alzheimer's disease, cardiovascular diseases and among others. Recent studies using mouse models have further demonstrated that mLOY is a driving factor of leukemia and cardiovascular diseases. These findings suggest that mLOY not only provides a common genetic explanation for the occurrence of many chronic diseases in men, but also provides a new kernel for studying sex differences in human lifespan and disease risk. Here, we briefly summarize the findings from the population-based cohort studies on clonal hematopoiesis driven by LOY. Subsequently we sort out the risk factors of mLOY, methods for detecting mLOY and developing mLOY mouse models, and the potential mechanisms of mLOY in promoting a myriad of chronic diseases. Finally, we provide our own forward-looking perspectives for the future challenges and opportunities in mLOY. The findings from this review provide references for studying the biological role of Y chromosome and sex difference of chronic diseases.
期刊介绍:
Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.