{"title":"Streamline-directed tunable deterministic lateral displacement chip: A numerical approach to efficient particle separation","authors":"","doi":"10.1016/j.chroma.2024.465397","DOIUrl":"10.1016/j.chroma.2024.465397","url":null,"abstract":"<div><div>In conventional Deterministic Lateral Displacement (DLD), the migration behavior of a particle of specific size is determined by the critical diameter (D<sub>c</sub>), which is predefined by the device's geometry. In contrast to the typical approach that alters the angle between the pillar array and fluid streamlines by modifying the geometrical parameters, this study introduces a novel perspective that focuses on changing the direction of the streamlines. The proposed technique offers a tunable DLD chip featuring a straightforward design that allows for easy fabrication. This chip features one completely horizontal pillar array with two bypass channels on the top and bottom of the DLD chamber. The width of these bypass channels changes linearly from their inlet to their outlet. Two design configurations are suggested for this chip, characterized by either parallel or unparallel slopes of the bypass channels. This chip is capable of generating a wide range of D<sub>c</sub> values by manipulating two distinct control parameters. The first control parameter involves adjusting the flow rates in the two bypass channels. The second control parameter entails controlling the slopes of these bypass channels. Both of these parameters influence the direction of particle-carrying streamlines resulting in a change in the path-line of the particles. By changing the angle of streamlines with pillar array, the D<sub>c</sub> can be tuned. Prior to determining the D<sub>c</sub> for each case, an initial estimation was made using a Python script that utilized the streamline coordinates. Subsequently, through FEM modeling of the particle trajectories, precise D<sub>c</sub> values were ascertained and compared with the estimated values, revealing minimal disparities. By adjusting the flow rate and slope of the bypass channels, maximum D<sub>c</sub> ranges of 4–10 μm and 8–13 μm can be achieved, respectively. This innovative chip enables the attainment of D<sub>c</sub> values spanning from 0.5 to 14 μm.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A practical HPLC-MS method for the analysis of nitrosamine drug substance related impurities using an inexpensive single quadrupole mass spectrometer","authors":"","doi":"10.1016/j.chroma.2024.465399","DOIUrl":"10.1016/j.chroma.2024.465399","url":null,"abstract":"<div><div>Nitrosamine drug substance related impurities (NDSRIs) are often analyzed using high performance liquid chromatography (HPLC) with mass spectrometry (MS) detection. Due to high sensitivity requirements, high resolution MS or MS/MS is commonly used. However, it is difficult to implement this type of method for routine analysis at a supply site. Herein, we report a systematic approach to develop and validate a practical, robust, and user-friendly method for the analysis of NDSRIs using an inexpensive single quadrupole MS instrument such as QDa. We used 7-nitroso-3-(trifluoromethyl)-5,6,7,8-tetrahydro- [1,2,4] triazolo [4,3-a] pyrazine (NTTP) as an example to demonstrate the method development process. By optimizing the HPLC and MS parameters, we were able to develop a simple HPLC-MS method that provides the desired specificity and sensitivity for the analysis of NTTP and can be easily implemented in an analytical lab. The limit of quantitation is 0.5 ng/mL, corresponding to 0.1 ppm with respect to 5 mg/mL sitagliptin. The method has been successfully validated per ICH guidelines.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of amphiphilic hypercrosslinked porous polymers for magnetic extraction of multiple environmental pollutants in water","authors":"","doi":"10.1016/j.chroma.2024.465381","DOIUrl":"10.1016/j.chroma.2024.465381","url":null,"abstract":"<div><div>Under the principle of similar compatibility, researchers have developed various polarity extractants corresponding to a class of chemicals. Separating different polarities chemicals with one extractant effectively has become a novel research trend in separation science. Given the complexity of environmental sample matrices and the significant differences in polarity and solubility of various compounds, the introduction of hydrophilic groups to hydrophobic material skeletons can lead to sorbents with hydrophilic-lipophilic balance (HLB) property and thus improve their extraction performance for substances with different polarities. In this work, a hypercrosslinked polymer (HCP<sub>Pz-TPB</sub>), designated as HLB, was synthesized by incorporating polar pyrazine and nonpolar triphenylbenzene molecules within each other. Subsequently, a core-shell magnetic composite material was obtained by encapsulating magnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles in HCP<sub>Pz-TPB</sub>. The material was applied as an adsorbent for magnetic solid phase extraction (MSPE) and combined with a high-performance liquid chromatography-photodiode array detector (HPLC-PDA) to enrich, separate, and detect seven polar contaminants in environmental water samples. The proposed approach, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@HCP<sub>Pz-TPB</sub>−MSPE-HPLC-PDA, is characterized by its outstanding high sensitivity, low detection limits, wide linear range, and good reproducibility. The method demonstrated satisfactory linearity in the range of 0.05–2 μg mL<sup>-1</sup> with R<sup>2</sup> values between 0.9969 and 0.9997; the limits of detection (LOD) were observed to be within the range of 0.0019–0.016 μg L<sup>-1</sup>, and limits of quantification (LOQ) was observed to be within the range of 0.0064–0.054 μg L<sup>-1</sup> range with good precision. The recoveries of the different contaminants in the environmental samples ranged from 83.61 to 116.46% (RSD≤10.56, <em>n</em> = 5). The new hydrophilic-lipophilic balance extractant is highly efficient, sensitive, and precise for extracting different polar pollutants. The findings demonstrate that the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@HCP<sub>Pz-TPB</sub> display a remarkable affinity for multiple targets, driven by complex interactions including multi-stackings and hydrogen bonding as a sorbent. The synthesized Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@HCP<sub>Pz-TPB</sub> may be employed in diverse applications, including extraction, removal, and determination of diverse trace multi-target analytes in complex media.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of polarity-based solvent system for countercurrent chromatography in the guidance of solvent selectivity: n-hexane/ethyl acetate/ alcohol solvents/water as an example","authors":"","doi":"10.1016/j.chroma.2024.465389","DOIUrl":"10.1016/j.chroma.2024.465389","url":null,"abstract":"<div><div>Solvent system selection based on polarity is a common strategy in a countercurrent chromatography (CCC) analysis. However, the solvent selectivity of solvent system is often ignored, despite its significant impact on the separation efficiency of CCC. In this study, the role of solvent in the overall properties of solvent system and the selective classification of solvent system were discussed to improve the solvent system selection based on polarity. Firstly, the mathematical relationship between logarithm of the partition coefficient (<em>log K</em>) of the template molecule and solvent composition of n-hexane/ethyl acetate/alcohol solvents (methanol, ethanol, and isopropanol)/water (HEAwat) system was analyzed and the optimal solvent system (<em>K</em> = 1) of the template molecules was determined. Then, the actual methanol concentration at the column inlet when the analyte peak in a HPLC analysis (B%) and the clustering results of the average polarity (<em>P'</em>) of the optimal CCC solvent system were analyzed. Finally, the classification of HEAWat system in terms of its overall solvent properties by deducing equations of selectivity parameters (<span><math><msub><mi>χ</mi><mi>e</mi></msub></math></span>, <span><math><msub><mi>χ</mi><mi>d</mi></msub></math></span>, and <span><math><msub><mi>χ</mi><mi>n</mi></msub></math></span>) to explain the <em>P'</em> values clustering results. The results showed that HEAWat system was suitable for the separation of analytes with 55 % < <em>B</em>% < 100 %. However, the n-hexane/ethyl acetate/isopropanol/water (HEIWat) system proved more suitable for the separation of large polar compounds to other HEAWat system when the <em>P'</em> value decreased due to the change of alcohol solvents. The selected solvent systems were classified into group III and IV by Snyder's method. The solvent systems in group III were suitable for the separation of analytes with 85 % < <em>B</em>% < 100 %, and the distribution behavior of analytes was mainly influenced by the ratio of each solvent. The solvent systems in group IV were suitable for the separation of analytes with 55 % < <em>B</em>% < 85 %, and the distribution behavior of analytes was mainly influenced by the type of alcohol solvents.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and screening of potential anti-pneumonia active ingredients and targets of Qing-Kai-Ling oral liquid via UHPLC-Q-Exactive Orbitrap mass spectrometry based on data post-processing","authors":"","doi":"10.1016/j.chroma.2024.465391","DOIUrl":"10.1016/j.chroma.2024.465391","url":null,"abstract":"<div><div>Qing-Kai-Ling oral liquid is commonly used clinically for the treatment of fever and upper respiratory tract infection. Moreover, studies have shown that Qing-Kai-Ling oral liquid has an anti-pneumonia effect. However, owing to its complex pharmacodynamic material basis, its pharmacological research and clinical application are limited. To address this problem, the chemical constituents of Qing-Kai-Ling oral liquid were identified by ultra-high performance liquid chromatography quadrupole-Exactive Orbitrap mass (UHPLC-Q-Exactive Orbitrap MS) and network pharmacology methods, which were used to predict its potential anti-pneumonia target and signalling pathway. A total of 150 compounds were identified and tentatively characterized, including 35 amino acids and their derivatives, 36 organic acids, 20 terpenoids, 20 alkaloids, 12 glycosides, 7 flavonoids, and 20 others. Among them, 14 compounds were accurately identified by comparing their retention time and mass spectrum data with those of reference substances. Additionally, we performed molecular simulation calculations via Density Function Theory to determine the plausibility of the compound cleavage reactions and further confirm compound structures. Furthermore, 90 key targets were screened through network pharmacology, with the particular focus on the PI3K-AKT, MAPK and TNF signalling pathways. This method achieved the first comprehensive identification of the chemical composition of Qing-Kai-Ling oral liquid and elucidated its potential mechanism of anti-pneumonia. The results provide valuable reference and data support for pharmacodynamic substance research and quality control.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes for pipette tip solid-phase extraction of microcystins in water","authors":"","doi":"10.1016/j.chroma.2024.465390","DOIUrl":"10.1016/j.chroma.2024.465390","url":null,"abstract":"<div><div>The occurrence of microcystins (MCs) during harmful algal blooms (HABs) represents a major threat to freshwater environments. In this work, a novel surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes (PCSs) was prepared for the enrichment of MCs. The copolymerization of bifunctional amphiphilic monomers, 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-benzylquininium chloride (BQN), with the cross-linker methacryl substituted polyhedral oligomeric silsesquioxane (POSS) was achieved in an ionic liquid-based porogenic medium. The hierarchical porous structure, a variety of surface functional groups and weak hydrophilicity were well characterized on the prepared materials using scanning electron microscopy, nitrogen adsorption/desorption analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential analysis and water contact angle testing, respectively. The as-prepared surface amphiphilic PCSs was used as an adsorbent for pipette tip solid-phase extraction (PT-SPE) to enrich microcystins (MCs) from surface waters before their analysis by capillary electrochromatography (CEC) and liquid chromatography-mass spectrometry (LC-MS). Under the optimal conditions, the established PT-SPE-LC-MS method exhibited a wide linear range (10–10,000 ng <em>L</em><sup>−1</sup>), low limits of detection (4.0–8.0 ng <em>L</em><sup>−1</sup>) and satisfactory recoveries (89.5–102.8 %) for MCs. An adsorption mechanism involving electrostatic interactions, hydrogen bonding, hydrophilic interactions, and π-π stacking has been proposed. The findings suggest that the use of surface amphiphilic PCSs materials as adsorbents in the PT-SPE platform facilitates efficient enrichment of MCs for subsequent chromatographic analysis. These investigations offer a new perspective on the simple and uncomplicated pretreatment of complex environmental samples.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reproducible 3D culture of multicellular tumor spheroids in supramolecular hydrogel from cancer stem cells sorted by sedimentation field-flow fractionation","authors":"","doi":"10.1016/j.chroma.2024.465393","DOIUrl":"10.1016/j.chroma.2024.465393","url":null,"abstract":"<div><div>Three-dimensional (3D) cancer models, such as multicellular tumor spheroids (MCTS), are biological supports used for research in oncology, drug development and nanotoxicity assays. However, due to various analytical and biological challenges, the main recurring problem faced when developing this type of 3D model is the lack of reproducibility. When using a 3D support to assess the effect of biologics, small molecules or nanoparticles, it is essential that the support remains constant over time and multiples productions. This constancy ensures that any effect observed following molecule exposure can be attributed to the molecule itself and not to the heterogeneous properties of the 3D support. In this study, we address these analytical challenges by evaluating for the first time the 3D culture of a sub-population of cancer stem cells (CSCs) from a glioblastoma cancer cell line (U87-MG), produced by a SdFFF (sedimentation field-flow fractionation) cell sorting, in a supramolecular hydrogel composed of single, well-defined molecule (bis-amide bola amphiphile 0.25% w/v) with a stiffness of 0.4 kPa. CSCs were chosen for their ability of self-renewal and multipotency that allow them to generate fully-grown tumors from a small number of cells.</div><div>The results demonstrate that CSCs cultured in the hydrogel formed spheroids with a mean diameter of 336.67 ± 38.70 µm by Day 35, indicating reproducible growth kinetics. This uniformity is in contrast with spheroids derived from unsorted cells, which displayed a more heterogeneous growth pattern, with a mean diameter of 203.20 ± 102.93 µm by Day 35. Statistical analysis using an unpaired <em>t</em>-test with unequal variances confirmed that this difference in spheroid size is significant, with a p-value of 0.0417 (p < 0.05).</div><div>These findings demonstrate that CSC-derived spheroids, when cultured in a well-defined hydrogel, exhibit highly reproducible growth patterns compared to spheroids derived from unsorted cells, making them a more reliable 3D model for biological research and drug testing applications.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expanding cyclodextrin use in normal phase and super/subcritical fluid chromatographic modes for the chiral separation of 1,4-dihydropyridines","authors":"","doi":"10.1016/j.chroma.2024.465394","DOIUrl":"10.1016/j.chroma.2024.465394","url":null,"abstract":"<div><div>Cyclodextrin-based stationary phases are important chiral selectors in liquid chromatography. These chiral selectors are most commonly used in the reversed-phase mode because native cyclodextrin assumes a torus conformation with a hydrophobic cavity, facilitating inclusion complexation in aqueous environments. However, the value of native and aliphatic-derivatized cyclodextrins in other modes, such as the normal phase liquid chromatography (NPLC) or super/subcritical fluid chromatography (SFC), remains unexplored. In this work, we report chiral separations of pharmaceutically relevant compounds with the 1,4-dihydropyridine (DHP) scaffold on a 2-hydroxypropyl-β-cyclodextrin (CD-RSP) stationary phase in NPLC and SFC modes. Although CD-RSP is conventionally considered only effective in the reversed-phase mode, we show that these compounds tend to separate better in other modes. This is particularly apparent for analytes with hydrogen-bonding moieties. We propose that the separation mechanism primarily depends on external adsorption rather than inclusion complexation. The negligible impact of a complexation-competitive additive on retention in non-aqueous modes further supports this claim. Additionally, van Deemter analysis demonstrated the efficiency and environmental benefit of using this stationary phase in the SFC mode, further highlighting the promise of aliphatic derivatized cyclodextrin stationary phases for greener separations.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clindamycin phosphate-based deep eutectic solvent as a chiral selector for enantioseparation of amino alcohol drugs in nonaqueous capillary electrophoresis","authors":"","doi":"10.1016/j.chroma.2024.465388","DOIUrl":"10.1016/j.chroma.2024.465388","url":null,"abstract":"<div><div>Clindamycin phosphate (CP) exhibits good enantioselectivity for many basic drugs, but its separation effect for most amino alcohol drugs is not satisfactory. In this work, a deep eutectic solvent (DES) chiral selector based on CP was prepared for the first time and utilized as a single chiral selector in nonaqueous capillary electrophoresis (NACE) to separate twelve amino alcohol drugs. Compared with unmodified CP, the separations of model drugs in the DES chiral selector system were significantly improved. Most amino alcohol drugs could be completely separated, and the peak shapes were good. In addition, we used infrared spectroscopy and nuclear magnetic resonance method to study the specific separation mechanism and explored the reasons why DES chiral selector has better enantioselectivity. This work is the first to directly modify antibiotic chiral selector into DES, indicating a direction for us to develop novel chiral recognition materials.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An amide-based covalent organic framework chemically anchored on silica nanoparticles for headspace microextraction sampling of halogenated hydrocarbons in air","authors":"","doi":"10.1016/j.chroma.2024.465387","DOIUrl":"10.1016/j.chroma.2024.465387","url":null,"abstract":"<div><div>A needle trap device (NTD) was developed using an amide-based covalent-organic framework (COF), chemically bonded to silica nanoparticles. The NTD was coupled with gas chromatography-flame ionization detection (GC-FID) and employed for the headspace microextraction analysis of halogenated hydrocarbons (HHCs) in the air. The adsorbent was characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FE-SEM) techniques.</div><div>Optimal values for the experimental variables were assessed using response surface methodology (RSM) with a central composite design (CCD), thereby reducing the number of experiments, material consumption, costs, and time. The optimal values for desorption time and temperature were obtained 5 min and 260 °C, respectively. Breakthrough volume (BtV) was studied over the range of 0.5 - 3 times the occupational exposure limit (OEL) and its optimal value was found to be 1200 mL. The optimal sampling temperature and relative humidity (RH) were obtained 20 °C, and 15 %, respectively. The limits of detection (LODs) and limits of quantification (LOQs) were ranged from 0.013 to 0.077 μg <span>l</span><sup>-1</sup> and 0.041 to 0.21 μg <span>l</span><sup>-1</sup>, respectively, with a linear dynamic range (LDR) of 0.04 to 100 μg <span>l</span><sup>-1</sup>. The method's repeatability and reproducibility (RSD %) were observed over the ranges of 5.3 - 6.4 % and 4.7 -6.9 %, respectively. A statistically validated agreement was observed between the NTD-GC-FID method and the NIOSH 1003 standard procedure for the sampling and determination of HHCs in real workplace air samples, demonstrating the reliability and accuracy of the developed approach.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}