Machine learning-driven insights into retention mechanism in IAM chromatography of anticancer sulfonamides: Implications for biological efficacy

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Wiktor Nisterenko , Beata Żołnowska , Jiayin Deng , Dominika Zgoda , Alicja Różycka , Katarzyna Ewa Greber , Aneta Pogorzelska , Krzysztof Szafrański , Anita Bułakowska , Łukasz Tomorowicz , Anna Kawiak , Wiesław Sawicki , Defang Ouyang , Jarosław Sławiński , Krzesimir Ciura
{"title":"Machine learning-driven insights into retention mechanism in IAM chromatography of anticancer sulfonamides: Implications for biological efficacy","authors":"Wiktor Nisterenko ,&nbsp;Beata Żołnowska ,&nbsp;Jiayin Deng ,&nbsp;Dominika Zgoda ,&nbsp;Alicja Różycka ,&nbsp;Katarzyna Ewa Greber ,&nbsp;Aneta Pogorzelska ,&nbsp;Krzysztof Szafrański ,&nbsp;Anita Bułakowska ,&nbsp;Łukasz Tomorowicz ,&nbsp;Anna Kawiak ,&nbsp;Wiesław Sawicki ,&nbsp;Defang Ouyang ,&nbsp;Jarosław Sławiński ,&nbsp;Krzesimir Ciura","doi":"10.1016/j.chroma.2025.465911","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML) tools offer new opportunities in drug discovery, especially for enhancing our understanding of molecular interactions with biological systems. This study develops a comprehensive quantitative structure-retention relationship (QSRR) model to elucidate sulfonamides' binding mechanisms to phospholipids via immobilized artificial membrane (IAM) chromatography. Using a dataset of over 500 sulfonamide derivatives, we combined experimental IAM-HPLC data with computational molecular descriptors and ML techniques, achieving robust predictive models. The descriptor-based LASSO regression model effectively predicts retention behavior (R² = 0.71, Q² = 0.77), providing insights into molecular interactions. Critical descriptors influencing these interactions include aqueous solubility, nitrogen-to-oxygen ratio, atomic and mass descriptors such as atom and ring count, as well as log<em>P</em>, indicative of molecular lipophilicity. Furthermore, the fingerprint-based predictive support vector machine model demonstrated superior performance (R² = 0.899 Q² = 0.810) highlighting structural features such as benzene rings and nitrogen-attached fragments as crucial factors in determining phospholipid affinity. Furthermore, predictive models for anticancer activities across three cell lines—HCT-116, HeLa, and MCF-7—were constructed, highlighting CHI<sub>IAM</sub> value as a critical determinant of bioactivity. The findings underscore the utility of integrated ML and chromatographic approaches in streamlining the drug development pipeline, improving predictions of biological efficacy while reducing experimental burden.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1751 ","pages":"Article 465911"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325002596","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) tools offer new opportunities in drug discovery, especially for enhancing our understanding of molecular interactions with biological systems. This study develops a comprehensive quantitative structure-retention relationship (QSRR) model to elucidate sulfonamides' binding mechanisms to phospholipids via immobilized artificial membrane (IAM) chromatography. Using a dataset of over 500 sulfonamide derivatives, we combined experimental IAM-HPLC data with computational molecular descriptors and ML techniques, achieving robust predictive models. The descriptor-based LASSO regression model effectively predicts retention behavior (R² = 0.71, Q² = 0.77), providing insights into molecular interactions. Critical descriptors influencing these interactions include aqueous solubility, nitrogen-to-oxygen ratio, atomic and mass descriptors such as atom and ring count, as well as logP, indicative of molecular lipophilicity. Furthermore, the fingerprint-based predictive support vector machine model demonstrated superior performance (R² = 0.899 Q² = 0.810) highlighting structural features such as benzene rings and nitrogen-attached fragments as crucial factors in determining phospholipid affinity. Furthermore, predictive models for anticancer activities across three cell lines—HCT-116, HeLa, and MCF-7—were constructed, highlighting CHIIAM value as a critical determinant of bioactivity. The findings underscore the utility of integrated ML and chromatographic approaches in streamlining the drug development pipeline, improving predictions of biological efficacy while reducing experimental burden.

Abstract Image

机器学习驱动的洞察在IAM色谱中抗癌磺胺的保留机制:对生物功效的影响
机器学习(ML)工具为药物发现提供了新的机遇,尤其是在增强我们对分子与生物系统相互作用的理解方面。本研究建立了一个全面的定量结构-保留关系(QSRR)模型,通过固定人工膜(IAM)色谱法阐明磺胺类药物与磷脂的结合机制。利用包含 500 多种磺胺衍生物的数据集,我们将 IAM-HPLC 实验数据与计算分子描述符和 ML 技术相结合,建立了稳健的预测模型。基于描述符的 LASSO 回归模型有效地预测了保留行为(R² = 0.71,Q² = 0.77),为分子相互作用提供了见解。影响这些相互作用的关键描述符包括水溶性、氮氧比、原子和质量描述符(如原子数和环数)以及表明分子亲脂性的 logP。此外,基于指纹的支持向量机预测模型表现出卓越的性能(R² = 0.899 Q² = 0.810),突出了苯环和附氮片段等结构特征是决定磷脂亲和性的关键因素。此外,还构建了三种细胞系(HCT-116、HeLa 和 MCF-7)的抗癌活性预测模型,强调 CHIIAM 值是生物活性的关键决定因素。这些发现强调了集成 ML 和色谱方法在简化药物开发流程、改进生物药效预测同时减轻实验负担方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信