Sergi Gregorio-Lozano, Victoria Bolos-Sánchez, Jorge Pitarch-Motellón, Elena Pitarch, Lubertus Bijlsma
{"title":"用污染的水灌溉后植物基质中具有持久性、流动性和毒性物质的分析方法","authors":"Sergi Gregorio-Lozano, Victoria Bolos-Sánchez, Jorge Pitarch-Motellón, Elena Pitarch, Lubertus Bijlsma","doi":"10.1016/j.chroma.2025.465948","DOIUrl":null,"url":null,"abstract":"<div><div>Reusing wastewater for irrigation is proposed as a strategy to address water scarcity. However, the long-term environmental consequences of this practice are still unknown, especially when reclaimed water contains contaminants of emerging concern, such as persistent, mobile, and toxic (PMT) compounds, due to the inefficiency of wastewater treatment plants in removing certain pollutants. As a result, irrigation with contaminated water could lead to their uptake by crops and enter the food chain. While data on the presence of PMTs in environmental samples is starting to emerge, the analysis of certain compounds in vegetable matrices remains unexplored. In this study, an analytical methodology was developed and validated for the determination of 8 PMTs (i.e.<em>,</em> benzophenone-3, clarithromycin, imazalil, metformin, sulpiride, terbutryn, tiapride, and tramadol) in escarole, tomatoes, and tomato leaves. The proposed analytical methodology used a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction method prior to mixed-mode liquid chromatography tandem mass spectrometry analysis. Method validation, performed according to SANTE guidelines, presented satisfactory results at studied concentrations (1, 10 and 100 ng·g<sup>-1</sup> for each compound/matrix combination, except for metformin in escarole (50 and 500 ng·g<sup>-1</sup>). Recoveries ranged from 70 to 120 %, with a precision of ≤ 20 % for most compounds. Benzophenone-3 and tiapride, for which no isotopically labelled internal standard was available, could be adjusted by applying a correction factor. The limit of quantification was 1 ng·g<sup>-1</sup> for all compounds in the three matrices, except for benzophenone-3 and metformin in both escarole and tomato leaves. The applicability of the method was tested by analysing samples from an experimental greenhouse plot where crops were irrigated with water spiked with the selected PMTs.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1751 ","pages":"Article 465948"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical methodology for challenging persistent, mobile, and toxic substances in vegetal matrices after irrigation with contaminated water\",\"authors\":\"Sergi Gregorio-Lozano, Victoria Bolos-Sánchez, Jorge Pitarch-Motellón, Elena Pitarch, Lubertus Bijlsma\",\"doi\":\"10.1016/j.chroma.2025.465948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reusing wastewater for irrigation is proposed as a strategy to address water scarcity. However, the long-term environmental consequences of this practice are still unknown, especially when reclaimed water contains contaminants of emerging concern, such as persistent, mobile, and toxic (PMT) compounds, due to the inefficiency of wastewater treatment plants in removing certain pollutants. As a result, irrigation with contaminated water could lead to their uptake by crops and enter the food chain. While data on the presence of PMTs in environmental samples is starting to emerge, the analysis of certain compounds in vegetable matrices remains unexplored. In this study, an analytical methodology was developed and validated for the determination of 8 PMTs (i.e.<em>,</em> benzophenone-3, clarithromycin, imazalil, metformin, sulpiride, terbutryn, tiapride, and tramadol) in escarole, tomatoes, and tomato leaves. The proposed analytical methodology used a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction method prior to mixed-mode liquid chromatography tandem mass spectrometry analysis. Method validation, performed according to SANTE guidelines, presented satisfactory results at studied concentrations (1, 10 and 100 ng·g<sup>-1</sup> for each compound/matrix combination, except for metformin in escarole (50 and 500 ng·g<sup>-1</sup>). Recoveries ranged from 70 to 120 %, with a precision of ≤ 20 % for most compounds. Benzophenone-3 and tiapride, for which no isotopically labelled internal standard was available, could be adjusted by applying a correction factor. The limit of quantification was 1 ng·g<sup>-1</sup> for all compounds in the three matrices, except for benzophenone-3 and metformin in both escarole and tomato leaves. The applicability of the method was tested by analysing samples from an experimental greenhouse plot where crops were irrigated with water spiked with the selected PMTs.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1751 \",\"pages\":\"Article 465948\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967325002961\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325002961","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Analytical methodology for challenging persistent, mobile, and toxic substances in vegetal matrices after irrigation with contaminated water
Reusing wastewater for irrigation is proposed as a strategy to address water scarcity. However, the long-term environmental consequences of this practice are still unknown, especially when reclaimed water contains contaminants of emerging concern, such as persistent, mobile, and toxic (PMT) compounds, due to the inefficiency of wastewater treatment plants in removing certain pollutants. As a result, irrigation with contaminated water could lead to their uptake by crops and enter the food chain. While data on the presence of PMTs in environmental samples is starting to emerge, the analysis of certain compounds in vegetable matrices remains unexplored. In this study, an analytical methodology was developed and validated for the determination of 8 PMTs (i.e., benzophenone-3, clarithromycin, imazalil, metformin, sulpiride, terbutryn, tiapride, and tramadol) in escarole, tomatoes, and tomato leaves. The proposed analytical methodology used a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction method prior to mixed-mode liquid chromatography tandem mass spectrometry analysis. Method validation, performed according to SANTE guidelines, presented satisfactory results at studied concentrations (1, 10 and 100 ng·g-1 for each compound/matrix combination, except for metformin in escarole (50 and 500 ng·g-1). Recoveries ranged from 70 to 120 %, with a precision of ≤ 20 % for most compounds. Benzophenone-3 and tiapride, for which no isotopically labelled internal standard was available, could be adjusted by applying a correction factor. The limit of quantification was 1 ng·g-1 for all compounds in the three matrices, except for benzophenone-3 and metformin in both escarole and tomato leaves. The applicability of the method was tested by analysing samples from an experimental greenhouse plot where crops were irrigated with water spiked with the selected PMTs.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.