{"title":"Reducing the water quenching processes using heavy water in capillary electrophoresis with fluorescence detection","authors":"","doi":"10.1016/j.chroma.2024.465411","DOIUrl":"10.1016/j.chroma.2024.465411","url":null,"abstract":"<div><div>Water, ubiquitous in analytical methods, is renowned for its fluorescence quenching properties, influencing techniques like fluorescence spectrophotometry or techniques with fluorescence detection. This study explores the impact of water (H₂O) substitution for heavy water (D₂O) on the fluorescence behavior of anthraquinones and anthracyclines. Anthraquinones and anthracyclines play crucial roles in pharmacy, serving as essential components in various therapeutic formulations, particularly in cancer treatment and other pharmacological interventions. Capillary electrophoresis (CE) with heavy water as the background electrolyte (BGE) solvent offers superior sensitivity to the separation and detection of these analytes. Experimental results demonstrate the improved detection limits and separation efficiency of selected anthraquinones rhein (RH), aloe-emodin (AE), and anthracyclines doxorubicin (DOX), epirubicin (EPI) and daunorubicine (DAU) in heavy water-based buffers, highlighting the potential of heavy water in advancing analytical chemistry.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transferability of global retention models in reversed-phase liquid chromatography for natural products","authors":"","doi":"10.1016/j.chroma.2024.465410","DOIUrl":"10.1016/j.chroma.2024.465410","url":null,"abstract":"<div><div>Considerable progress has been made in enhancing resolution in reversed-phase liquid chromatography for the analysis of complex samples, particularly within the field of natural products, through the application of global retention models using multi-linear gradients. Global models effectively differentiate solute retention effects from those originating from the column and solvent, offering predictive capabilities comparable to conventional individual retention models, without the requirement for standards for all compounds. While conventional individual models result in higher accuracy, they frequently demand standards that are unavailable for natural product samples. Moreover, the creation of individual models can be time-consuming due to the need for repetitive work for additional compounds. Experimental validation of global models has demonstrated that the accuracy is enough for the prediction of complex chromatograms. Through a carefully designed experimental work, this study reports the correct determination of global parameters for column and solvent, with excellent consistency across various medicinal plant samples. The successful transfer of predictions and optimisation of resolution across diverse plant species (lemon balm, peppermint, and pennyroyal) is confirmed. This highlights the applicability of predictions using global models across botanical varieties.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced detection of catecholamines in human urine using Cis-diol-microporous organic networks with PT-SPE and HPLC-MS/MS","authors":"","doi":"10.1016/j.chroma.2024.465408","DOIUrl":"10.1016/j.chroma.2024.465408","url":null,"abstract":"<div><div>A novel cis-diol-microporous organic networks (MONs-2OH) material was synthesized via room temperature and Sonogashira coupling reactions, which exhibits exceptional adsorption properties for catecholamines (CAs). MONs-2OH demonstrates robust hydrogen bonding and π-π stacking interactions, crucial for effective adsorption. The MONs-2OH was incorporated into pipette tip solid-phase extraction and developed a new method for detecting CAs in human urine using HPLC-MS/MS. Characterization of the adsorbent revealed its high stability, large specific surface area, abundant phenolic hydroxyl groups, rapid extraction speed, and superior adsorption efficiency. The method achieved a wide linear range (0.5–500 ng/mL), low detection limits (0.06–0.26 ng/mL), high accuracy (90.4 %-99.4 %), and excellent precision (RSD ≤ 10 %). Comparative studies showed MONs-2OH outperforms commercial adsorbents in terms of recovery and adsorption capacity. The results underscore the potential of MONs-2OH for rapid and sensitive CAs determination, offering significant advantages for the auxiliary diagnosis of depression and enhancing the application of PT-SPE in sample pretreatment.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An economically viable stable isotope-enhanced multiple reaction monitoring method for total fatty acid analysis in a mouse model of non-alcoholic fatty liver disease","authors":"","doi":"10.1016/j.chroma.2024.465406","DOIUrl":"10.1016/j.chroma.2024.465406","url":null,"abstract":"<div><div>The complex pathological mechanisms of non-alcoholic fatty liver disease (NAFLD) are closely related to dysregulated lipid metabolism, and the therapeutic effects of the traditional Chinese medicine Zexie-Baizhu Decoction (AA) on NAFLD have been gaining increasing attention. However, research into altered lipid metabolism, especially fatty acids, in NAFLD and the intervention of AA faces technical challenges, especially in the precise quantitative analysis of fatty acids in biological samples. The high complexity of biological matrices, particularly after drug intervention, greatly increases the difficulty of detection. Therefore, this study innovatively developed a simple and economical stable isotope derivatization technique by synthesizing <em>d<sub>6</sub><sub><img></sub></em>N,N-dimethylethylenediamine (<em>d<sub>6</sub></em>-DMED) in the laboratory, establishing a simple and economical method for fatty acid quantification. This method employs a chemical reaction under low-temperature conditions to ensure the efficient synthesis of <em>d<sub>6</sub></em>-DMED. Using ultra-high performance liquid chromatography-triple quadrupole mass spectrometry technique (UHPLC-MS/MS), combined with optimized chromatographic separation conditions and dynamic multiple reaction monitoring mode, the study established a highly sensitive detection method for 35 fatty acid derivatives. Methodological evaluation showed that the limits of quantification ranged from 0.002 to 0.060 μM, with high linearity of R² > 0.995. Additionally, the relative recovery rates were between 93.14% and 106.63%. To further demonstrate the feasibility of this method for fatty acid quantification, it was applied to measure fatty acids in multiple tissues in a mouse NAFLD model, as well as the effects of AA intervention on fatty acid metabolism. This rapid, simple, and cost-effective detection method not only enhances the understanding of NAFLD mechanisms but also provides a new strategy for evaluating the biological complex system after drug intervention.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A direct immersion-solid-phase microextraction method for the automated determination of 3- to 6-ring polycyclic aromatic hydrocarbons in saliva by gas-chromatography-tandem mass spectrometry","authors":"","doi":"10.1016/j.chroma.2024.465404","DOIUrl":"10.1016/j.chroma.2024.465404","url":null,"abstract":"<div><div>This work presents a novel method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in saliva samples using solid phase microextraction (SPME) coupled with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS). The protocol utilizes the latest commercially available overcoated fiber (PDMS/DVB/PDMS) for direct immersion extraction of the target analytes, enabling the determination of thirteen PAHs, including low-volatile compounds. The SPME extraction method was optimized using a central composite design (CCD). The evaluation of the fiber coating's robustness over time demonstrated excellent extraction performance with no significant degradation. The validation procedure confirmed good performance for all parameters, with LOQ values (100 ng/L for ten analytes and 500 ng/L for three analytes) comparable to other chromatographic methods. The environmental impact of the protocol was objectively assessed using two recently proposed metrics: the Green Analytical Procedure Index (GAPI) and the Analytical Greenness metric for sample preparation (AGREEprep). Both metrics indicated good overall environmental friendliness, with AGREEprep providing a satisfactory comprehensive score despite the use of highly impactful instrumentation. These characteristics make the developed method suitable for routine analysis in environmental and epidemiological monitoring.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and discrimination of adhesive species using ATR-FTIR combined with Raman, and HS-GC-IMS together with multivariate statistical analysis","authors":"","doi":"10.1016/j.chroma.2024.465402","DOIUrl":"10.1016/j.chroma.2024.465402","url":null,"abstract":"<div><div>Identifying the species and origin of adhesives in criminal investigations aids in narrowing inquiry scope and supporting case detection. This study introduces two advanced combined analytical techniques for distinguishing adhesive species, including attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) combined with Raman spectroscopy, and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) together with multivariate statistical analysis. ATR-FTIR categorized seven adhesives into three groups based on the base materials, with further differentiation achieved via Raman spectra. Analysis of volatile components identified 79 volatile organic compounds (VOCs), with esters being the most concentrated. The fingerprint profile clearly illustrated the characteristic fingerprint sequence and unique marker compounds of each adhesive, effectively enabling their differentiation. Multivariate statistical analysis methods, including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), heatmap, and hierarchical cluster analysis (HCA), were utilized to visually interpret the classification of adhesives. This integrated analytical approach provides a comprehensive analysis of adhesive compositions, facilitating the diversification and precision of adhesive species identification, and broadening the scope for detecting and analyzing trace evidence in forensic science.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in covalent organic frameworks for sample preparation","authors":"","doi":"10.1016/j.chroma.2024.465398","DOIUrl":"10.1016/j.chroma.2024.465398","url":null,"abstract":"<div><div>Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complementarity of two-dimensional gas chromatography and two-dimensional liquid chromatography for the analysis of depolymerised lignin","authors":"","doi":"10.1016/j.chroma.2024.465401","DOIUrl":"10.1016/j.chroma.2024.465401","url":null,"abstract":"<div><div>Two-dimensional gas chromatography (GC × GC) and two-dimensional liquid chromatography (LC × LC) are nowadays widely used in academia and industry due to their high separation power. However, as far as we know, the complementarity of these two techniques has not yet been thoroughly studied based on the analysis of the same sample. Therefore, this was undertaken here by analysing the liquid fraction obtained after depolymerising a natural waste – lignin – with GC × GC and off-line comprehensive LC × SFC (SFC: supercritical fluid chromatography). Using complementary techniques is also important for lignin valorisation, as thorough structural characterisation of the depolymerised product can aid with developing and improving valorisation processes. For the tentative identification, NIST library was used for GC × GC–MS results and MS-DIAL together with SIRIUS for LC × SFC-MS/MS data. This allowed to study which compounds are detectable with the different 2D methods but also to discuss the limitations of the data analysis processes. The previous knowledge that LC techniques are more suitable than GC × GC for the analysis of larger oligomers and other low volatility compounds was confirmed; however, it was seen that GC × GC enabled the analysis of smaller compounds, such as aliphatic alcohols and saturated compounds. Overall, the study demonstrates the complementarity of the two techniques but also draws attention to the different detectable compound groups and classifications that the two techniques can provide.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peptide ligands for the affinity purification of adenovirus from HEK293 and vero cell lysates","authors":"","doi":"10.1016/j.chroma.2024.465396","DOIUrl":"10.1016/j.chroma.2024.465396","url":null,"abstract":"<div><div>Adenovirus (AdVs) is the viral vector of choice in vaccines and oncolytic applications owing to its high transduction activity and inherent immunogenicity. For decades, AdV isolation has relied on ultracentrifugation and ion-exchange chromatography, which are not suitable to large-scale production and struggle to deliver sufficient purity. Immunoaffinity chromatography resins of recent introduction feature high binding capacity and selectivity, but mandate harsh elution conditions (pH 3.0), afford low yield (< 20%), and provide limited reusability. Seeking a more efficient and affordable alternative, this study introduces the first peptide affinity ligands for AdV purification. The peptides were identified via combinatorial selection and <em>in silico</em> design to target hexons, the most abundant proteins in the adenoviral capsid. Selected peptide ligands AEFFIWNA and TNDGPDYSSPLTGSG were conjugated on chromatographic resins and utilized to purify AdV serotype 5 from HEK293 and Vero cell lysates. The peptide-functionalized resins feature high binding capacity (> 10<sup>10</sup> active virions per mL at the residence time of 2 min), provide high yield (> 50%) and up to 100-fold reduction of host cell proteins and DNA. Notably, the peptide ligands enable gentle elution conditions (pH 8) that prevent the “shedding” of penton and fiber proteins, thus affording intact adenovirus particles with high cell-transduction activity. The study of the peptide ligands by surface plasmon resonance and molecular docking and dynamics simulations confirmed the selective targeting of hexon proteins and elucidated the molecular-level mechanisms underlying binding and release. Collectively, these results demonstrate the strong promise of peptide ligands presented herein for the affinity purification of AdVs from cell lysates.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Group hexavalent actinide separation from lanthanides using sodium bismuthate chromatography","authors":"","doi":"10.1016/j.chroma.2024.465400","DOIUrl":"10.1016/j.chroma.2024.465400","url":null,"abstract":"<div><div>Advanced used nuclear fuel (UNF) reprocessing strategies are limited by the complex radiochemical separations and engineering required to achieve the separation of actinides (An) from neutron scavenging lanthanides (Ln). The accessibility of the hexavalent oxidation state for the actinides (U – Am) provides a pathway to achieving a group hexavalent actinide separation from the trivalent lanthanides and Cm. The solid oxidant and ion exchanger, sodium bismuthate (NaBiO<sub>3</sub>), has been demonstrated to quantitatively oxidize and separate Am from trivalent Cm in a column chromatographic system. This work expands on the use of NaBiO<sub>3</sub> chromatography to characterize the adsorption, kinetic, and elution behavior of U, Pu, and Eu. Separation factors over 200 with rapid kinetics were observed at dilute nitric acid concentrations with a complete An/Ln separation achieved in under an hour. The adsorption and chromatographic behavior of key fission products present in various reprocessing raffinates was characterized which demonstrated potential application of a NaBiO<sub>3</sub>-based separation following a TRUEX process.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}