Linda J. Bolay , Tobias Schmitt , Simon Hein , Omar S. Mendoza-Hernandez , Eiji Hosono , Daisuke Asakura , Koichi Kinoshita , Hirofumi Matsuda , Minoru Umeda , Yoshitsugu Sone , Arnulf Latz , Birger Horstmann
{"title":"Microstructure-resolved degradation simulation of lithium-ion batteries in space applications","authors":"Linda J. Bolay , Tobias Schmitt , Simon Hein , Omar S. Mendoza-Hernandez , Eiji Hosono , Daisuke Asakura , Koichi Kinoshita , Hirofumi Matsuda , Minoru Umeda , Yoshitsugu Sone , Arnulf Latz , Birger Horstmann","doi":"10.1016/j.powera.2022.100083","DOIUrl":"10.1016/j.powera.2022.100083","url":null,"abstract":"<div><p>In-orbit satellite REIMEI, developed by the Japan Aerospace Exploration Agency, has been relying on off-the-shelf Li-ion batteries since its launch in 2005. The performance and durability of Li-ion batteries is impacted by various degradation mechanisms, one of which is the growth of the solid-electrolyte interphase (SEI). In this article, we analyse the REIMEI battery and parameterize a full-cell model with electrochemical cycling data, computer tomography images, and capacity fading experiments using image processing and surrogate optimization. We integrate a recent model for SEI growth into a full-cell model and simulate the degradation of batteries during cycling. To validate our model, we use experimental and in-flight data of the satellite batteries. Our combination of SEI growth model and microstructure-resolved 3D simulation shows, for the first time, experimentally observed inhomogeneities in the SEI thickness throughout the negative electrode for the degraded cells.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"14 ","pages":"Article 100083"},"PeriodicalIF":4.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000014/pdfft?md5=93c076a2ff582b48af7da7dc44a7c1a4&pid=1-s2.0-S2666248522000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42906498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew Greenwood , Jens Matthies Wrogemann , Richard Schmuch , Hwamyung Jang , Martin Winter , Jens Leker
{"title":"The Battery Component Readiness Level (BC-RL) framework: A technology-specific development framework","authors":"Matthew Greenwood , Jens Matthies Wrogemann , Richard Schmuch , Hwamyung Jang , Martin Winter , Jens Leker","doi":"10.1016/j.powera.2022.100089","DOIUrl":"https://doi.org/10.1016/j.powera.2022.100089","url":null,"abstract":"<div><p>Government investment constitutes a large portion of overall investment in research and development of lithium-ion batteries (LIBs) and other future battery technologies with the goal of electrifying the transportation sector and so removing a major source of global greenhouse gas emissions. Poor investments, however, can result in taxpayer funding losses and political backlash, making clear communication and informed decision-making critical. This manuscript presents the Battery Component Readiness Level scale, an overhauled version of the Technology Readiness Level (TRL) scale currently utilized by the EU for innovation programs that has been customized for use in battery technology development. It retains the structure of the EU TRL scale while adding in-depth description of technology-specific development as well as discussion of aspects such as manufacturability and cost that are necessary to understand technological promise and risk. Its use by the EU and other parties involved in battery development can thus improve communication between all involved sectors, from government to academia to industry, and can aid in better-informed decision-making regarding investments. This can ultimately contribute to a more efficient electrification of the transportation sector and any other sectors where batteries display transformative potential.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"14 ","pages":"Article 100089"},"PeriodicalIF":4.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000075/pdfft?md5=76a009b8c01d4078833799abdb216fba&pid=1-s2.0-S2666248522000075-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137081399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuanchen Liu , Kayoung Park , Magnus So , Shota Ishikawa , Takeshi Terao , Kazuhiko Shinohara , Chiyuri Komori , Naoki Kimura , Gen Inoue , Yoshifumi Tsuge
{"title":"3D generation and reconstruction of the fuel cell catalyst layer using 2D images based on deep learning","authors":"Xuanchen Liu , Kayoung Park , Magnus So , Shota Ishikawa , Takeshi Terao , Kazuhiko Shinohara , Chiyuri Komori , Naoki Kimura , Gen Inoue , Yoshifumi Tsuge","doi":"10.1016/j.powera.2022.100084","DOIUrl":"10.1016/j.powera.2022.100084","url":null,"abstract":"<div><p>The catalyst layer (CL) being the site of electrochemical reactions, is the core subunit of the membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFCs). Thus, the porous structure of the CL has a significant influence on oxygen transfer resistance and affects the charge/discharge performance. In this study, the three-dimensional (3D) porous structure of the catalyst layer is reconstructed based on the deep convolutional generative adversarial network (DCGAN) deep learning method, utilizing focused ion beam scanning electron microscopy (FIB-SEM) microstructure graphs as training data. Each set of spatial-continuous microstructure graphs, generated by DCGAN with interpolation in latent space, is applied to build a unique 3D microstructure of the CL without the use of real FIB-SEM data. Meanwhile, distinct interpolation conditions in the DCGAN are discussed to optimize the ultimate structure by approaching the structural information to real data, including that of porosity, particle size distribution, and tortuosity. Moreover, the comparison of real and generated structural data reveal that the data generated by DCGAN shows an adjacency relationship with real data, indicating its potential applicability in the field of electrochemical simulation with reduced situational costs.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"14 ","pages":"Article 100084"},"PeriodicalIF":4.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000026/pdfft?md5=1f471bd1216a9bffc544d14f1103c35a&pid=1-s2.0-S2666248522000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47681258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gold nanoparticles for power retention in electrochemical capacitors with KSCN-based aqueous electrolyte","authors":"Paulina Bujewska, Barbara Gorska, Krzysztof Fic","doi":"10.1016/j.powera.2022.100087","DOIUrl":"10.1016/j.powera.2022.100087","url":null,"abstract":"<div><p>The paper reports the performance of the electrochemical capacitor operating with a nanoparticle-modified electrolyte. 7 mol L<sup>−1</sup> KSCN aqueous solution, known as the electrolyte exhibiting redox activity originating from pseudohalide anion (SCN<sup>−</sup>), has been enriched by gold nanoparticles at nanomolar concentration. The cycle life, specific energy of the device and power retention have been improved. The influence of nanoparticles concentration on the electrochemical capacitor performance has also been verified. All the nanoparticle-modified electrolytes display very high conductivity (∼370 mS cm<sup>−1</sup>); it is confirmed that the high energy density is retained at the whole range of applied current densities: 13.7 Wh kg<sup>−1</sup> (at 1 A g<sup>−1</sup>) and 12.1 Wh kg<sup>−1</sup> (at 20 A g<sup>−1</sup>).</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"14 ","pages":"Article 100087"},"PeriodicalIF":4.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000051/pdfft?md5=80424a625fcaf35fc0984d48009c6f42&pid=1-s2.0-S2666248522000051-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45574994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziyu Song , Xingxing Wang , Hao Wu , Wenfang Feng , Jin Nie , Hailong Yu , Xuejie Huang , Michel Armand , Heng Zhang , Zhibin Zhou
{"title":"Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective","authors":"Ziyu Song , Xingxing Wang , Hao Wu , Wenfang Feng , Jin Nie , Hailong Yu , Xuejie Huang , Michel Armand , Heng Zhang , Zhibin Zhou","doi":"10.1016/j.powera.2022.100088","DOIUrl":"10.1016/j.powera.2022.100088","url":null,"abstract":"<div><p>The inherent properties of non-aqueous electrolytes are highly associated with the identity of salt anions. To build highly conductive and chemically/electrochemically robust electrolytes for lithium-ion batteries (LIBs) and rechargeable lithium metal batteries (RLMBs), various kinds of weakly coordinating anions have been proposed as counterparts of lithium salts and ionic liquids. Among them, bis(fluorosulfonyl)imide anion ([N(SO<sub>2</sub>F)<sub>2</sub>]<sup>−</sup>, FSI<sup>−</sup>) has aroused special attention in battery field due to the unique physical, chemical, and electrochemical properties of the FSI-based electrolytes. Herein, an overview on the synthetic methodologies of the FSI-based salts (e.g., alkali metal salts, ionic liquids) is provided, and their applications in LIBs and RLMBs are also updated. Future directions on developing FSI-based and/or FSI-derived electrolytes are presented. The present work is anticipated to inspire the design and screening of new anions for battery use, particularly, those stemming from sulfonimide anions.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"14 ","pages":"Article 100088"},"PeriodicalIF":4.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000063/pdfft?md5=85b7866189cd2bc48f9a90c7ee459f30&pid=1-s2.0-S2666248522000063-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42290574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiromichi Nishiyama Dr. Ph.D. , Akihiro Iiyama Prof. Ph.D. , Junji Inukai Prof. Ph.D.
{"title":"The distribution and diffusion coefficient of water inside a Nafion® membrane in a running fuel cell under transient conditions analyzed by operando time-resolved CARS spectroscopy","authors":"Hiromichi Nishiyama Dr. Ph.D. , Akihiro Iiyama Prof. Ph.D. , Junji Inukai Prof. Ph.D.","doi":"10.1016/j.powera.2021.100080","DOIUrl":"10.1016/j.powera.2021.100080","url":null,"abstract":"<div><p>The performance and stability of polymer electrolyte membrane fuel cells (PEMFCs) are directly affected by the distribution of water molecules inside the membrane. In this study, coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to measure the distribution of water in a Nafion® membrane under transient conditions after increasing the current density. At the cathodic surface of the membrane, an overshoot in amount of water was observed as a result of the increase in the rate of water production and electro-osmosis, while at the other locations in the membrane was observed a gradual increase of water as a result of water transport. The calculation of the water diffusion coefficient during power generation was subsequently carried out, which was consistent with the results of the previous values obtained statically.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"13 ","pages":"Article 100080"},"PeriodicalIF":4.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000354/pdfft?md5=49159638ad2a89f6cddb6a4869e1155d&pid=1-s2.0-S2666248521000354-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48110066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joop Enno Frerichs , Lukas Haneke , Martin Winter , Michael Ryan Hansen , Tobias Placke
{"title":"19F MAS NMR study on anion intercalation into graphite positive electrodes from binary-mixed highly concentrated electrolytes","authors":"Joop Enno Frerichs , Lukas Haneke , Martin Winter , Michael Ryan Hansen , Tobias Placke","doi":"10.1016/j.powera.2021.100075","DOIUrl":"10.1016/j.powera.2021.100075","url":null,"abstract":"<div><p>Dual-graphite batteries (DGBs), which are based on anion intercalation into graphite positive electrodes, exhibit great potential for stationary energy storage due to use of more sustainable and low-cost electrode materials and processing routes. Binary-mixed highly concentrated electrolytes (HCEs) appeal highly suitable for the high operating voltages of DGBs, although the lack of sufficient insights into the formation of graphite intercalation compounds (GICs) limits the cell performance in terms of specific capacity and lifetime so far. Herein, anion intercalation from single-salt HCEs (LiPF<sub>6</sub> and LiBF<sub>4</sub>) and an equimolar binary mixture of LiPF<sub>6</sub>/LiBF<sub>4</sub> are studied in graphite || Li metal cells, revealing an improved performance in terms of specific capacity and Coulombic efficiency in the order LiPF<sub>6</sub> > LiPF<sub>6</sub>/LiBF<sub>4</sub> > LiBF<sub>4</sub>. LiBF<sub>4</sub>-based cells exhibit an increased onset potential for anion intercalation and higher area specific impedance, suggesting an ineffective interphase formation at graphite. X-ray diffraction reveals GIC formation, while a lower stage number is achieved for the LiBF<sub>4</sub>-based HCE. <sup>19</sup>F MAS NMR spectroscopy analysis at various states-of-charge confirms no significant charge transfer between the intercalated anions and the graphite host and suggest preferred intercalation of PF<sub>6</sub><sup>-</sup> compared to BF<sub>4</sub><sup>-</sup> as well as a high translational and/or rotational mobility of the intercalated anions.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"12 ","pages":"Article 100075"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000305/pdfft?md5=32e636ff8cb267e6838e4d02f69c1801&pid=1-s2.0-S2666248521000305-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44197685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Ressel , Peter Kuhn , Simon Fischer , Michael Jeske , Thorsten Struckmann
{"title":"An all-extruded tubular vanadium redox flow cell - Characterization and model-based evaluation","authors":"Simon Ressel , Peter Kuhn , Simon Fischer , Michael Jeske , Thorsten Struckmann","doi":"10.1016/j.powera.2021.100077","DOIUrl":"10.1016/j.powera.2021.100077","url":null,"abstract":"<div><p>The vanadium redox flow battery (VRFB) as one of the most promising electrochemical storage systems for stationary applications still needs further cost reductions. Tubular cell designs might reduce production costs by extrusion production of cell components and small sealing lengths. Based on a first study of the authors [1], this work demonstrates the feasibility of extruded tubular VRFB cells with high power density in the flow-by electrode configuration. Extruded cell components are the perfluorosulfonic acid cation exchange membrane with a diameter of 5.0 mm and carbon composite current collectors. The cell performance is experimentally characterized by polarization curve, ohmic resistance and galvanostatic cycling measurements. A maximum volumetric power density of 407 kW/m<sup>3</sup> and a maximum current density of 500 mA/cm<sup>2</sup> can be achieved. A non linear <em>E</em><sub><em>cell</em></sub>/<em>i</em>-model is used to evaluate exchange and limiting current densities while in-situ half cell SoC monitoring is applied to evaluate the extruded membrane.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"12 ","pages":"Article 100077"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000329/pdfft?md5=06b265e28a510d86cefe555b5dc303d8&pid=1-s2.0-S2666248521000329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49327045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kodama , A. Takeuchi , M. Uesugi , T. Miyuki , H. Yasuda , S. Hirai
{"title":"Nanoscale pore measurements in an all-solid-state lithium-ion battery with ultra-small-angle X-ray scattering (USAXS)","authors":"M. Kodama , A. Takeuchi , M. Uesugi , T. Miyuki , H. Yasuda , S. Hirai","doi":"10.1016/j.powera.2021.100076","DOIUrl":"10.1016/j.powera.2021.100076","url":null,"abstract":"<div><p>In a high performance all-solid-state lithium-ion battery (ASSLiB), lithium-ion should be smoothly transported to minimize overpotential. Nanoscale pores in the ASSLiB can inhibit ionic transportation; therefore, the pore structure should be measured and nanoscale pores should be prevented for high performance batteries. In this study, laboratory-scale ultra-small-angle X-ray scattering (USAXS) measurements are proposed to evaluate the nanoscale pores in ASSLiBs. The results measured with the USAXS are validated by comparing them with synchrotron radiation (SR) X-ray nanotomography data. The pore volumetric density distributions from the USAXS measurements are very close to those from SR X-ray nanotomography; this demonstrates that the nanoscale pores in ASSLiBs can be measured by USAXS. USAXS measurements of pore structures of solid electrolytes prepared from micron-scale and submicron-scale particles solid electrolyte (SE) reveal that the pore structure is not simply dependent on the SE particle size.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"12 ","pages":"Article 100076"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000317/pdfft?md5=3e6b1c633cfcc38eaf14f0880708723e&pid=1-s2.0-S2666248521000317-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46498274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of roll press on consolidation and electric/ionic-path formation of electrodes for all-solid-state battery","authors":"Maria Yokota, Takuro Matsunaga","doi":"10.1016/j.powera.2021.100078","DOIUrl":"10.1016/j.powera.2021.100078","url":null,"abstract":"<div><p>This study investigated unpressed and pressed electrodes with the synchrotron radiation X-ray computed laminography (CL) technique to clarify the relationship between the packing structure formation of an electrode processed with a roll press and the performance of all-solid-state batteries. Additionally, we evaluated the length and thickness of percolation paths constructed by the electrode particles using the 3-dimensional structure obtained by the X-ray CL measurement. The smallest packing fraction was in the cathode layers in both the pressed and unpressed electrodes. The cathode packing fraction had a non-uniform distribution shape as a function of the layer thickness. A similar distribution shape was maintained after pressing, except near the surface in contact with the pressing roller. Pressing caused the packing fraction of the cathode layer to become much larger than the unpressed one, especially near the surface where it significantly increased. The thickness of the percolation paths in the cathode layer also increased after pressing. Furthermore, we discovered that the cathode local path thickness, measured by using regions segmented by packing fraction values, had a linear relationship with the packing fraction. Consequently, the performance bottle neck is caused by the local layer that has the smallest packing fraction.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"12 ","pages":"Article 100078"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000330/pdfft?md5=7087022575df98d5ed063431e3b05558&pid=1-s2.0-S2666248521000330-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45089155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}