多孔传输层厚度在聚合物电解质水电解中的作用

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Carl Cesar Weber , Tobias Schuler , Ruben De Bruycker , Lorenz Gubler , Felix N. Büchi , Salvatore De Angelis
{"title":"多孔传输层厚度在聚合物电解质水电解中的作用","authors":"Carl Cesar Weber ,&nbsp;Tobias Schuler ,&nbsp;Ruben De Bruycker ,&nbsp;Lorenz Gubler ,&nbsp;Felix N. Büchi ,&nbsp;Salvatore De Angelis","doi":"10.1016/j.powera.2022.100095","DOIUrl":null,"url":null,"abstract":"<div><p>The reduction of capital and operational expenditure in polymer electrolyte water electrolysis (PEWE) is of crucial importance for materializing the hydrogen economy. Optimizing the components and design of PEWE cells is a major contribution to this goal. In this study, we have analyzed the impact of reducing the anodic porous transport layer (PTL) thickness by over one order of magnitude from 2 mm to 0.16 mm while keeping other parameters in the PTL constant for a systematic comparison. PTL morphology and its impact on cell performance have been correlated by X-ray tomographic microscopy (XTM) and overpotential breakdown analysis. We found that varying PTL thicknesses in this range can contribute to up to 120 mV overpotential at 4 A/cm<sup>2</sup> which can be attributed to water transport limitations below the flow field land in thin PTLs. Furthermore, the results indicate that there is an optimal thickness in dependency of the flow field design. For the investigated class of materials, this is corresponding to roughly half of the flow field land size. Subsequently, a guideline was deduced for the optimal relation of PTL thickness and flow field characteristics.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"15 ","pages":"Article 100095"},"PeriodicalIF":5.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000130/pdfft?md5=234caa6c0309dc0ff4f6324f978d9c65&pid=1-s2.0-S2666248522000130-main.pdf","citationCount":"7","resultStr":"{\"title\":\"On the role of porous transport layer thickness in polymer electrolyte water electrolysis\",\"authors\":\"Carl Cesar Weber ,&nbsp;Tobias Schuler ,&nbsp;Ruben De Bruycker ,&nbsp;Lorenz Gubler ,&nbsp;Felix N. Büchi ,&nbsp;Salvatore De Angelis\",\"doi\":\"10.1016/j.powera.2022.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reduction of capital and operational expenditure in polymer electrolyte water electrolysis (PEWE) is of crucial importance for materializing the hydrogen economy. Optimizing the components and design of PEWE cells is a major contribution to this goal. In this study, we have analyzed the impact of reducing the anodic porous transport layer (PTL) thickness by over one order of magnitude from 2 mm to 0.16 mm while keeping other parameters in the PTL constant for a systematic comparison. PTL morphology and its impact on cell performance have been correlated by X-ray tomographic microscopy (XTM) and overpotential breakdown analysis. We found that varying PTL thicknesses in this range can contribute to up to 120 mV overpotential at 4 A/cm<sup>2</sup> which can be attributed to water transport limitations below the flow field land in thin PTLs. Furthermore, the results indicate that there is an optimal thickness in dependency of the flow field design. For the investigated class of materials, this is corresponding to roughly half of the flow field land size. Subsequently, a guideline was deduced for the optimal relation of PTL thickness and flow field characteristics.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"15 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000130/pdfft?md5=234caa6c0309dc0ff4f6324f978d9c65&pid=1-s2.0-S2666248522000130-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248522000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7

摘要

降低聚合物电解水电解(PEWE)的资本和运营支出对实现氢经济至关重要。优化PEWE电池的组件和设计是实现这一目标的主要贡献。在本研究中,我们分析了将阳极多孔传输层(PTL)厚度从2 mm减少到0.16 mm超过一个数量级的影响,同时保持PTL中的其他参数不变以进行系统比较。通过x射线层析显微镜(XTM)和过电位击穿分析,研究了PTL形态及其对细胞性能的影响。我们发现,在这个范围内,不同的PTL厚度可以在4 A/cm2时产生高达120 mV的过电位,这可以归因于薄PTL流场陆地以下的水运限制。此外,结果表明,与流场设计相关,存在一个最佳厚度。对于所研究的材料类别,这大约相当于流场面积的一半。在此基础上,推导出了PTL厚度与流场特性的最佳关系准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the role of porous transport layer thickness in polymer electrolyte water electrolysis

On the role of porous transport layer thickness in polymer electrolyte water electrolysis

The reduction of capital and operational expenditure in polymer electrolyte water electrolysis (PEWE) is of crucial importance for materializing the hydrogen economy. Optimizing the components and design of PEWE cells is a major contribution to this goal. In this study, we have analyzed the impact of reducing the anodic porous transport layer (PTL) thickness by over one order of magnitude from 2 mm to 0.16 mm while keeping other parameters in the PTL constant for a systematic comparison. PTL morphology and its impact on cell performance have been correlated by X-ray tomographic microscopy (XTM) and overpotential breakdown analysis. We found that varying PTL thicknesses in this range can contribute to up to 120 mV overpotential at 4 A/cm2 which can be attributed to water transport limitations below the flow field land in thin PTLs. Furthermore, the results indicate that there is an optimal thickness in dependency of the flow field design. For the investigated class of materials, this is corresponding to roughly half of the flow field land size. Subsequently, a guideline was deduced for the optimal relation of PTL thickness and flow field characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信