{"title":"A sustainable delamination approach for simultaneous separation and leaching of cathodes from end-of-life Li ion batteries","authors":"Pietro Cattaneo , Daniele Callegari , Fiorenza D'Aprile , Eliana Quartarone","doi":"10.1016/j.powera.2025.100181","DOIUrl":"10.1016/j.powera.2025.100181","url":null,"abstract":"<div><div>The increasing demand for Lithium-ion batteries (LIBs) in several applications has led to a substantial rise in their production, posing risks in the supply of critical raw materials (CRM, e.g.: Li, Ni, Co). Additionally, improper disposal of end-of-life batteries can lead to environmental pollution and loss of technological value stressing the necessity for sustainable recycling. Current methods involve shredding batteries into a black mass, further processed via pyrometallurgy (energy-intensive) and/or hydrometallurgy with inorganic acids (environmentally hazardous) to recover CRMs. A more refined approach to LIBs recycling includes the dismantling and the sorting of their components, allowing for a targeted extraction.</div><div>The spent cathodes recycling process here presented involves the simultaneous delamination from the current collector and the leaching (>95 %) of the cathode active material (CAM) in a citric acid solution, enabling also the recovery of Polyvinylidene fluoride (PVDF) and Carbon filler as unleached residues, which can be used as a composite binder for new electrodes manufacturing. Lastly, metals are recovered with high yields (>85 %) as precursors, used to resynthesise fresh CAM and close the recycling loop. To validate the proposed strategy, the recycled CAM was used in a new cathode manufacturing followed by its functional characterization in a half-cell configuration, achieving high coulombic efficiencies (>99.2 %) and satisfying specific capacities upon cycling (initial capacity: 115 mAh g<sup>−1</sup>).</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"34 ","pages":"Article 100181"},"PeriodicalIF":5.4,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144229560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreas Trondl , Benjamin Schaufelberger , Thomas Kisters , Clemens Fehrenbach , Anja Steiert , Dong-Zhi Sun
{"title":"Failure and constitutive behavior of a Li-ion pouch cell under mechanical loading","authors":"Andreas Trondl , Benjamin Schaufelberger , Thomas Kisters , Clemens Fehrenbach , Anja Steiert , Dong-Zhi Sun","doi":"10.1016/j.powera.2025.100178","DOIUrl":"10.1016/j.powera.2025.100178","url":null,"abstract":"<div><div>The constitutive mechanical behavior of the individual components in Lithium-ion cells has a fundamental influence on the development of internal electrical short-circuits in crash-relevant load scenarios. These short circuits can result in explosive, thermally unstable states (so called thermal runaways). The experimental characterization of mechanical properties of single components but also of entire cells is therefore a central aspect in the safety-related assessment of battery systems. This paper presents and compares experimental results of the mechanical characterization of individual cell components as well as whole pouch-cells under different loading patterns. Especially, the different mechanical behavior of the active materials NMC and graphite was investigated in dry and wet conditions. In compression tests, the presence of the electrolyte reduced the stress levels by about 100 % for the graphite layered anode (Cu) and by about 20 % for the NMC layered cathode (Al) compared to dry conditions. The separator displayed an anisotropy with tensile strengths differing by a factor of three between the longitudinal and transversal orientations. For investigating the failure of a whole pouch-cell, interrupted flat-punch and hemispherical-punch indentation tests were performed. Post-mortem CT analysis revealed that crack development is rather gradual than abrupt. The initiation and propagation of the failing cell structure were examined and related to the characteristics of the individual cell components. It could be concluded that for a physical based modeling of the deformation and fracture processes within the cell, understanding the mechanical behavior on component and on cell level is crucial.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"34 ","pages":"Article 100178"},"PeriodicalIF":5.4,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing the thermal treatment procedure using electrochemical methods to improve the performance of vanadium redox flow batteries","authors":"Mohammad Rahimi , Filippo Fenini , Anders Bentien","doi":"10.1016/j.powera.2025.100180","DOIUrl":"10.1016/j.powera.2025.100180","url":null,"abstract":"<div><div>In this article, different thermal treatment procedures were carefully investigated by electrochemical methods to find the optimized time and temperature for enhancing the electrochemical performance and activity of the graphite felt electrodes within the vanadium redox flow battery. Two prestigious and commercially used graphite felts of SGL GFD 4.65 EA and AvCarb G150 were used for this purpose. Cyclic voltammetry results initially were used to recognize the procedures with the most improved kinetics. This demonstrated the influences of treatment procedures on electrode kinetics by showing an improved electrode rate constant. In the following, area-specific resistance obtained by the polarization curves technique was used to examine the role of the thermal treatment procedure on improvement of the mass-transfer effect and, consequently, explore a treatment procedure to maximize the electrode activity. Both obtained CV and ASR data showed a better performance for thermally treated SGL 4.65 EA compared to that of AvCarb G150. Enhancing the electrode kinetics due to thermal treatment showed the largest contribution to reducing the ASR indicated by electrochemical impedance spectroscopy of the SGL 4.65 EA. The best electrode performance and activity was observed using the thermal treatment of the SGL 4.65 EA at 500/550 °C for 3/3.5 h with an ASR of 0.63/0.64 Ωcm<sup>2</sup>, respectively, lower than prior works with almost the same membrane properties. An interesting conclusion is that thermal treatment with an optimized procedure can sufficiently catalyze vanadium redox reactions on graphite felts better than those treated with electro-catalysts impressing no need for further electrode modification.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"33 ","pages":"Article 100180"},"PeriodicalIF":5.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144089053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced cycle life and capacity retention of dual electrolyte Li-ion capacitor through optimization of the solid electrolyte","authors":"Omar Gómez Rojas , Wataru Sugimoto","doi":"10.1016/j.powera.2025.100179","DOIUrl":"10.1016/j.powera.2025.100179","url":null,"abstract":"<div><div>Battery-supercapacitor hybrid devices bridge the gap between batteries and supercapacitors, offering high energy and power densities with excellent cycling stability. However, integrating their distinct energy storage mechanisms remains challenging. A strategy to address this challenge is advanced interphase engineering at the electrode|solid electrolyte junction. In this work, we present an optimized solid electrolyte (anolyte) for a layered graphite anode, designed to enhance lithium intercalation, mitigate lithium plating, and promote the formation of a stable Solid-Electrolyte Interphase (SEI) for a Lithium-Ion Capacitor (LiC). This approach significantly improves capacity retention and long-term stability, reaching 100 % over 3000 cycles and maintaining 96.6 % of the maximum capacity at 10,000 cycles, while also maintaining the anode potential below the operating voltage of lithiated graphite (<0.25 V vs Li|Li<sup>+</sup>). These findings demonstrate a step toward high-performance hybrid capacitors with improved durability and energy storage capabilities.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"33 ","pages":"Article 100179"},"PeriodicalIF":5.4,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144084198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaeseok Lee , Sungmin Kang , Heedae Lee , Kunho Lee , Gwangwoo Han , Sanghun Lee , Dong-Hyun Peck , Joongmyeon Bae
{"title":"Development of metal-supported solid oxide fuel cells with a thin-film electrolyte under an oxidizing atmosphere","authors":"Jaeseok Lee , Sungmin Kang , Heedae Lee , Kunho Lee , Gwangwoo Han , Sanghun Lee , Dong-Hyun Peck , Joongmyeon Bae","doi":"10.1016/j.powera.2025.100177","DOIUrl":"10.1016/j.powera.2025.100177","url":null,"abstract":"<div><div>Metal-supported solid oxide fuel cells (SOFCs), which have received much attention based on their high thermo-mechanical strength, are generally fabricated under a reducing atmosphere to prevent oxidation of the metal. The fabrication of metal-supported SOFCs under an oxidizing atmosphere resolves certain inherent issues related to fabrication in a reducing atmosphere, such as instability of the cathode materials and the inter-diffusion phenomenon. On the other hand, this approach limits the process temperature to prevent the excessive oxidation of the metal. In this work, a means by which to fabricate metal-supported SOFCs under an air environment is developed with a thin-film electrolyte, with deposition at room temperature. By introducing a pore-reducing layer while also controlling the viscosity of the coating solution, the surface of the anode is designed to be dense and flat, enabling the stable deposition of a dense thin-film electrolyte. Notable electrochemical performance is exhibited considering the limited process temperature, which must remain below 1000 °C. Through a durability test including temperature cycling and a post-mortem analysis, remarkable robustness of the metal-supported SOFCs is observed.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"33 ","pages":"Article 100177"},"PeriodicalIF":5.4,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143874872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Öykü Simsek , Philip Zimmer , Simon Muench , Ulrich S. Schubert
{"title":"Photopolymerized gel polymer electrolytes with cyclic carbonate side chains for Li-organic batteries at room temperature","authors":"Öykü Simsek , Philip Zimmer , Simon Muench , Ulrich S. Schubert","doi":"10.1016/j.powera.2025.100176","DOIUrl":"10.1016/j.powera.2025.100176","url":null,"abstract":"<div><div>In this study, we developed gel polymer electrolytes (GPEs) containing cyclic carbonate side chains produced <em>via</em> UV-induced free radical polymerization, a fast and cost-efficient synthesis route, for Li-organic batteries. Cyclic carbonate methacrylate (CCMA) was copolymerized with diethylene glycol methyl ether methacrylate (DEGMEM) for 1 h. Then the resultant polymer films were swelled in 1 M LiPF<sub>6</sub> in EC/DMC (50/50, v/v) with an electrolyte uptake of 500 %. These novel GPEs with an ionic conductivity of 1.1 mS cm<sup>−1</sup> at 20 °C were electrochemically tested in Li//PTMA cells in comparison with LP30. They were found to show maximum discharge capacities (62.6 <em>vs.</em> 63.9 mAh g<sup>−1</sup>, GPE <em>vs.</em> LP30) at 0.1 C in addition to better compatibility with Li anodes (25.7 <em>vs</em>. 40.2 mV overpotential in Li stripping/plating tests) and a comparable electrochemical stability window. The results confirm that these GPEs are promising candidates for Li-organic batteries.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"33 ","pages":"Article 100176"},"PeriodicalIF":5.4,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Li-ion battery voltage curve reconstruction using partial charge profiles: Actual v/s truncated data","authors":"Anubhav Singh , Puritut Nakhanivej , Yazmin Monaghan , Melanie J. Loveridge , Anup Barai","doi":"10.1016/j.powera.2025.100175","DOIUrl":"10.1016/j.powera.2025.100175","url":null,"abstract":"<div><div>Voltage reconstruction is a common technique used in estimation of degradation modes for aged Li-ion batteries. For real-life implementation, it is desirable for voltage reconstruction to work for partial charging as real-life batteries are rarely charged fully. In this pursuit, the presented work investigates a common practice of using truncated data from full charge as a representation of partial charging in voltage reconstruction. Usage of truncated data is prevalent despite known deviations between data collected from partial and full charge cycles and has resulted in a misconception that accurate voltage reconstruction is achievable using partial charging data. Therefore, voltage reconstruction errors between models parametrised using truncated data and actual partial charging data were compared. Results show a four-fold increase in error when using truncated data, which indicates that truncated data is an inappropriate proxy of partial charge. The findings also imply that partial charging is a limitation of voltage reconstruction modelling not highlighted before due to usage of truncated data. This limitation must be addressed to improve the applicability of voltage reconstruction. The study also emphasises the need to generate new battery degradation datasets with appropriate inclusion of partial charging data to enable the development of accurate and holistic models.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"33 ","pages":"Article 100175"},"PeriodicalIF":5.4,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143760824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive review and analysis of technology performance characteristics of lithium-ion battery cell manufacturing: Introducing a Call-for-Innovation-Heatmap","authors":"Oliver Krätzig, Florian Degen","doi":"10.1016/j.powera.2025.100174","DOIUrl":"10.1016/j.powera.2025.100174","url":null,"abstract":"<div><div>The Lithium-Ion Battery is attributed an enabling role for achieving climate policy goals by accelerating the shift of the mobility sector to renewable energy usage and improving renewable energy integration into the energy infrastructure through stationary storage. Thus, challenges related to further optimization of battery technology and its production that need to be tackled to achieve the set goals are manifold. Effective research funding planning is needed to efficiently use resources for advancing cell technologies and its production. However, despite being essential for identifying and prioritizing innovation needs based on technological performance, we perceive that an overview on how current issues in battery cell production hold for impact on a holistic operation site perspective is lacking. Thus, we aim at developing comprehensive process overview specifications for state-of-the-art lithium-ion battery cell production by applying a systematic, methodical approach as well as to derive critical problems and opportunities for targeted innovations application. We contribute to scientific literature by linking process streams and operational innovations in battery cell manufacturing to production management literature. Our findings furthermore have implications for both public research and industrial managers providing guidance on prioritizing development projects aiming at process management efficiency in battery cell manufacturing.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"33 ","pages":"Article 100174"},"PeriodicalIF":5.4,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim Greitemeier , Achim Kampker , Jens Tübke , Simon Lux
{"title":"China's hold on the lithium-ion battery supply chain: Prospects for competitive growth and sovereign control","authors":"Tim Greitemeier , Achim Kampker , Jens Tübke , Simon Lux","doi":"10.1016/j.powera.2025.100173","DOIUrl":"10.1016/j.powera.2025.100173","url":null,"abstract":"<div><div>Battery production for electric vehicles (EVs) necessitates a supply chain capable of supporting the exploitation of a variety of raw materials. Lithium, nickel, manganese, and cobalt are of particular significance for the dominant lithium-ion battery (LIB) technology, primarily relying on lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC) cathodes. Geographically, the global supply is heavily reliant on China with competition expected to intensify. In light of this, the questions of how global competition manifests at the company level and whether regions capture their share of the supply chain through domestic companies remain unanswered. These are addressed by analyzing the companies behind each supply chain sector and the respective raw materials. The results demonstrate that China, Europe, and the United States of America (USA) exhibit the most pronounced ownership across the supply chain, acquiring the largest foreign shares in the mining sector. Overall, China leads in a total of eleven out of the 12 investigated sectors, with its peak for LFP production at above 98 %. This preeminence, coupled with the substantial output of South Korea, Europe, and Japan in NMC production, the latter represents a viable target for mitigating supply chain vulnerabilities and attaining greater growth and sovereignty.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"32 ","pages":"Article 100173"},"PeriodicalIF":5.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficiency Enhancement on Solid Oxide Fuel Cell system with anode off-gas recycle by evaluating entropy and exergy change","authors":"Hsin-Yi Lai , Hung-Ju Lin , Yen-Hsin Chan","doi":"10.1016/j.powera.2025.100172","DOIUrl":"10.1016/j.powera.2025.100172","url":null,"abstract":"<div><div>The aim of this paper is to enhance the efficiency of the Solid Oxide Fuel Cell (SOFC) system through various system designs and parameters. To evaluate the effects of design configurations, the impact of high-temperature/low-temperature anode off-gas recycle (HT/LT-AGR) on system performance was investigated by calculating the entropy using the second law of thermodynamics. By analyzing the system with different AGR designs and considering the increasing entropy of heat components in the SOFC system, the efficiency calculations can be more practical and accurate.</div><div>In this study, the working efficiency of the SOFC system with HT-AGR is 56.215 %, which is 4.7 % higher than with LT-AGR. The results show that the heat exchanger (HEX) experiences the largest increasing entropy during the power generation process due to the significant temperature difference. At the end of this project, a <sub>CO2</sub> reformer will be used to optimize the system, decreasing the mole rate of <sub>CO2</sub> and CH4 while increasing the mole rate of H2. Based on the simulation results, using a <sub>CO2</sub> reformer can increase the mole rate of H2 by 3 %, improving the system efficiency up to 56.97 %.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"32 ","pages":"Article 100172"},"PeriodicalIF":5.4,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143351023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}