Francesco Gambino , Matteo Gastaldi , Alia Jouhara , Samuel Malburet , Simone Galliano , Nicola Cavallini , Giovanna Colucci , Marco Zanetti , Alberto Fina , Giuseppe Antonio Elia , Claudio Gerbaldi
{"title":"Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion","authors":"Francesco Gambino , Matteo Gastaldi , Alia Jouhara , Samuel Malburet , Simone Galliano , Nicola Cavallini , Giovanna Colucci , Marco Zanetti , Alberto Fina , Giuseppe Antonio Elia , Claudio Gerbaldi","doi":"10.1016/j.powera.2024.100160","DOIUrl":"10.1016/j.powera.2024.100160","url":null,"abstract":"<div><div>Liquid electrolytes are currently state-of-the-art for commercial Li-ion batteries. However, their use implicates inherent challenges, including safety concerns associated with flammability, limited thermal stability, and susceptibility to dendrite formation on the lithium metal anode, that can compromise the battery lifespan. Solid-state polymer electrolytes offer an alternative to conventional liquid electrolytes, aiming to mitigate safety, stability, and performance drawbacks. This study investigates the preparation and the comprehensive characterization of polyethylene oxide (PEO) and polycarbonate (PC) blends obtained through extrusion process. The process is solvent-free and easily scalable at the industrial level; it grants the efficient dispersion and mixing of <span>PEO</span> and <span>PC</span>. Blends at different ratios of PEO (M<sub>w</sub> of 4 × 10<sup>5</sup> and 4 × 10<sup>6</sup> g mol<sup>˗1</sup>) and two types of PCs (namely, polyethylene and polypropylene carbonate) including lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) are prepared. Optimization and investigation of the relative effects between the application of different PCs and the variable ratios of PEO/PCs on the mechanical, morphologic and electrochemical properties of the final polymeric membranes is carried out for future applications of these systems, as efficient electrolytes in all-solid-state lithium batteries.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"30 ","pages":"Article 100160"},"PeriodicalIF":5.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Clara Rolandi , Nerea Casado , Anthony Somers , Iratxe de Meatza , David Mecerreyes , Cristina Pozo-Gonzalo , Patrick C. Howlett , Robert Kerr , Maria Forsyth
{"title":"Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte","authors":"Ana Clara Rolandi , Nerea Casado , Anthony Somers , Iratxe de Meatza , David Mecerreyes , Cristina Pozo-Gonzalo , Patrick C. Howlett , Robert Kerr , Maria Forsyth","doi":"10.1016/j.powera.2024.100161","DOIUrl":"10.1016/j.powera.2024.100161","url":null,"abstract":"<div><div>Current battery production involves various energy intensive processes and the use of volatile, flammable and/or toxic chemicals. This study explores the potential for using a water-soluble and functional binder, poly(diallyldimethylammonium) (PDADMA) with diethyl phosphate (DEP) as a counter anion, for lithium manganese oxide (LMO) cathodes. By replacing the traditional polyvinylidene fluoride (PVDF) binder and its associated toxic N-methyl-2-pyrrolidone (NMP) solvent, PDADMA-DEP offers a more sustainable and cost-effective solution. Notably, PDADMA-DEP electrodes do not require high-temperature calendaring to achieve high performance unlike PVDF electrodes. X-ray Photoelectron Spectroscopy (XPS) indicated significant interactions between the binder and LMO that enhance stability and ion conduction. The PDADMA-DEP binder demonstrated excellent electrochemical rate capability up to 10C with the conventional organic liquid electrolyte (LP30), outperforming PVDF electrodes. The performance of both binders using a safer and non-volatile ionic liquid electrolyte, specifically 50 mol% LiFSI in N-trimethyl-N-propylammonium bis(fluorosulfonyl)imide, was also investigated to enhance the overall safety and environmental impact of the battery system. IL-based cells utilizing a PDADMA-DEP cathode binder demonstrated a 58 % capacity retention over 500 cycles at 0.5C when cycled at room temperature.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"30 ","pages":"Article 100161"},"PeriodicalIF":5.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Hainthaler, Akshaya S. Sidharthan, Desirée Leistenschneider, Andrea Balducci
{"title":"Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte","authors":"Andrea Hainthaler, Akshaya S. Sidharthan, Desirée Leistenschneider, Andrea Balducci","doi":"10.1016/j.powera.2024.100158","DOIUrl":"10.1016/j.powera.2024.100158","url":null,"abstract":"<div><div>Sodium-ion Capacitors (SICs) are becoming increasingly important energy storage devices. This study presents an in-depth comparison of a largely used electrolyte for said application, sodium hexafluorophosphate in ethylene carbonate:propylene carbonate (NaPF<sub>6</sub> in EC:PC), with the novel electrolyte sodium bis(trifluoromethanesulfonyl)imide in 1,1,2,2-tetraethoxyethane:propylene carbonate (NaTFSI in TEG:PC). Firstly, half-cells of the SIC standard electrode materials, hard carbon (HC) and activated carbon (AC), are shown to perform comparably well with the two electrolytes. However, the use of the novel electrolyte in SICs allows for an improved stability during float tests. All in all, the novel electrolyte NaTFSI in TEG:PC appears to be a very promising alternative electrolyte for SIC application.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"30 ","pages":"Article 100158"},"PeriodicalIF":5.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000246/pdfft?md5=c8e082d94221c43a647862db7da48bcc&pid=1-s2.0-S2666248524000246-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenya Wang , Dmitri L. Danilov , Rüdiger‐A. Eichel , Peter H.L. Notten
{"title":"The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries","authors":"Zhenya Wang , Dmitri L. Danilov , Rüdiger‐A. Eichel , Peter H.L. Notten","doi":"10.1016/j.powera.2024.100157","DOIUrl":"10.1016/j.powera.2024.100157","url":null,"abstract":"<div><p>Precise explanation and prediction of the aging behavior of lithium-ion batteries (LIBs) is essential for improving battery management systems. It is quickly becoming a hotspot in battery research. Solid electrolyte interphase (SEI) growth is regarded as the dominant factor of capacity losses in LIBs. However, the growth of SEI is yet to be understood in more detail due to its complexity. In the present paper, an advanced voltage-based aging model using an electron tunneling mechanism is proposed and validated by experiments. This model employs the electrode voltage as an input parameter for the first time with a tunneling mechanism, which is more flexible than existing energy-based approaches and can be used to predict the electron tunneling (dis)charge cycles. The proposed model is used to simulate tunneling current profiles during (dis)charging of graphite, LTO, and blend Si/C negative electrodes. The simulation results prove and explain that lower states-of-charge of LIBs mitigate electron tunneling and SEI growth, further reducing calendar aging. That work can be used to describe battery capacity losses better and it is crucial for predicting the state-of-health of LIBs.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"29 ","pages":"Article 100157"},"PeriodicalIF":5.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000234/pdfft?md5=9f4d36d84489a8287ddbd6e0fad46b5e&pid=1-s2.0-S2666248524000234-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy","authors":"Hong-Jyun Huang , Chia-Shuo Hsu , Jin-Ya Huang , Shu-Chih Haw , Han-Yi Chen , Nozomu Hiraoka , Yen-Fa Liao , Chih-Wei Hu","doi":"10.1016/j.powera.2024.100155","DOIUrl":"10.1016/j.powera.2024.100155","url":null,"abstract":"<div><p>The comprehensive understanding of the local structural changes surrounding lithium in lithium silicate (Li<sub>x</sub>SiO<sub>y</sub>) and silicide (Li<sub>x</sub>Si) within Li/SiO<sub>x</sub> batteries during the reversible structural transformations has been hindered by the limitations of current methodologies. In this work, the evolution of electronic structure at various lithiation stages has been addressed well by examining the Li K-edge spectra through X-ray Raman spectroscopy (XRS). The features observed in the Li K-edge XRS spectra provide insights into the development and alteration of Li<sub>x</sub>SiO<sub>y</sub>, which emerges in the initial phases and may be accompanied by a reduction in the ionicity of Li–O bonding during lithiation. These features also agree well with the accompanying FDMNES code simulation. The correlation between electrochemical mechanisms and spectral characteristics is further explored by applying pseudo-Voigt peaks and cumulative pseudo-Voigt functions for fitting purposes. The absence of a significant edge shift indicates a similarity in the electronic structure of Li<sub>x</sub>Si throughout lithiation, and no evidence of Li<sub>2</sub>O formation has also been observed. The Li K-edge XRS spectra exhibit strong agreement with the electrochemical behavior, establishing it as a valuable tool for investigating the evolution of electronic structure in Li/SiO<sub>x</sub> batteries.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"29 ","pages":"Article 100155"},"PeriodicalIF":5.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000210/pdfft?md5=76b32eabf2e3c2de1d453a662d44a423&pid=1-s2.0-S2666248524000210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Wu , Kai Han , Weican Hu , Wenfang Feng , Michel Armand , Zhibin Zhou , Heng Zhang
{"title":"Ionic liquids with sulfinyl-functionalized imide anion and their lithium electrolytes: (I) Physical and electrochemical properties","authors":"Hao Wu , Kai Han , Weican Hu , Wenfang Feng , Michel Armand , Zhibin Zhou , Heng Zhang","doi":"10.1016/j.powera.2024.100154","DOIUrl":"10.1016/j.powera.2024.100154","url":null,"abstract":"<div><p>Imide-based ionic liquids (ILs) are intriguing candidates for constructing safer electrolytes and better rechargeable batteries. In this work, a sulfinyl-functionalized imide anion, (trifluoromethanesulfinyl) (trifluoromethanesulfonyl)imide anion ([(CF<sub>3</sub>SO) (CF<sub>3</sub>SO<sub>2</sub>)N]<sup>−</sup>, [qTFSI]<sup>−</sup>), is proposed as negative charge for building low-melting ILs and high-performing electrolytes. The physicochemical properties of [qTFSI]-based ILs and their electrolytes are extensively characterized, and the reference systems with the classic sulfonimide anion, bis(trifluoromethanesulfonyl)imide anion ([(CF<sub>3</sub>SO<sub>2</sub>)<sub>2</sub>N]<sup>−</sup>, [TFSI]<sup>−</sup>) are also comparatively investigated. It has been revealed that the [qTFSI]<sup>−</sup> anion shows lesser extent of negative charge delocalization as compared to the reference [TFSI]<sup>−</sup> anion, which is responsible for slightly stronger interactions between IL cations and the sulfinyl-functionalized anion. The asymmetric feature of the [qTFSI]<sup>−</sup> anion contributes to lower glass and melting transitions of the corresponding ILs vs. [TFSI]-based ones, which effectively expands the operational temperature of the rechargeable batteries. Furthermore, the co-utilization of [qTFSI]<sup>−</sup> with [TFSI]<sup>−</sup> is found to improve the electrochemical compatibility of Li metal anode with the IL-based electrolytes, sustaining better cycling stability of the Li symmetric cells. The current work offers an elegant approach for the design of new anions for interface-favorable ILs and their electrolytes.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"28 ","pages":"Article 100154"},"PeriodicalIF":5.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000209/pdfft?md5=7c9b6e2215ce8193cb108128d1d0697a&pid=1-s2.0-S2666248524000209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tri-sulfur radical trapping in lithium–sulfur batteries","authors":"Roza Bouchal , Clément Pechberty , Athmane Boulaoued , Niklas Lindahl , Patrik Johansson","doi":"10.1016/j.powera.2024.100153","DOIUrl":"https://doi.org/10.1016/j.powera.2024.100153","url":null,"abstract":"<div><p>Lithium-sulfur (Li–S) batteries have emerged as a next-generation battery technology owing to their prospects of high capacity and energy density. They, however, suffer from rapid capacity decay due to the shuttling of reaction intermediate species: Li polysulfides (LiPSs). One of the more important and intriguing PSs is the tri-sulfur radical (<span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span>), observed mainly in high-donor number (DN) solvent-based electrolytes. Although this radical has been proposed to be crucial to full active material (AM) utilization, there is currently no direct evidence of the impact of <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> on cycling stability. To gain more insight into the role of the <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span>, we studied the use of radical traps in low and high DN solvent-based electrolytes by <em>operando</em> Raman spectroscopy. The traps were based on nitrone and iminium cation, and <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> was indeed successfully trapped in <em>ex situ</em> analysis. However, it was the ionic liquid-based trap, specifically pyridinium, that effectively suppressed <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> during battery operation. Overall, the PS formation was altered in the presence of the traps and we confirmed the impact of <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> formation on the Li–S battery redox reactions and show how the trapping correlates with Li–S battery performance. Therefore, stabilization of the <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> might be a path to improved Li–S batteries.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"28 ","pages":"Article 100153"},"PeriodicalIF":5.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000192/pdfft?md5=d3bf5ed5febce78519798da3441e763a&pid=1-s2.0-S2666248524000192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishing Li-acetylide (Li2C2) as functional element in solid-electrolyte interphases in lithium-ion batteries","authors":"Viviane Maccio-Figgemeier , Gebrekidan Gebresilassie Eshetu , Damian Mroz , Hyunsang Joo , Egbert Figgemeier","doi":"10.1016/j.powera.2024.100152","DOIUrl":"https://doi.org/10.1016/j.powera.2024.100152","url":null,"abstract":"<div><p>Previously, lithium-acetylide (Li<sub>2</sub>C<sub>2</sub>) had been identified as electrolyte degradation product on lithium-metal based electrodes using Raman spectroscopy. This raised the question, if Li<sub>2</sub>C<sub>2</sub> is also be formed on graphitic electrodes in lithium-ion batteries without lithium metal present. In order to shed light on this research question, we performed a series of in situ Raman experiments with graphitic electrodes in half- and full-cell configuration. The recorded cell potential dependent spectra clearly prove the presence of Li<sub>2</sub>C<sub>2</sub> in the lithiated state of the electrodes, but the according peak vanishes when delithiating. This observation indicates a somewhat reversible process involving Li<sub>2</sub>C<sub>2</sub>. Several chemical/electrochemical reactions are in question to contribute to this effect. With respect to its properties and potential role in the solid-electrolyte interphase (SEI) DFT calculations of Li<sub>2</sub>C<sub>2</sub>-nanoclusters were performed, which revealed an exceptionally low energy band gap, hence a remarkable electric conductivity. In conjunction with a relatively high ionic conductivity, Li<sub>2</sub>C<sub>2</sub> appears to play a key role in the degradation of lithium-ion batteries, which had not yet been revealed nor taken into account in simulations of the interphase.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"28 ","pages":"Article 100152"},"PeriodicalIF":5.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000180/pdfft?md5=841d9ceaf9a647e74a350bdfb42703d7&pid=1-s2.0-S2666248524000180-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"State of charge estimation with hysteresis-prone open circuit voltage in lithium-ion batteries using the trajectory correction hysteresis (TCH) model","authors":"Jakob Schmitt, Ivo Horstkötter, Bernard Bäker","doi":"10.1016/j.powera.2024.100151","DOIUrl":"https://doi.org/10.1016/j.powera.2024.100151","url":null,"abstract":"<div><p>State-of-the-art lithium-ion cell chemistries with pronounced open-circuit voltage hysteresis (OCV), characterised by asymmetry and directional dependence, present a challenge for estimating the state of charge (SOC). Without understanding the hysteresis behaviour, OCV measurement points that lie within the hysteresis window cannot be used for SOC correction. After obtaining the data efficiency of the trajectory correction hysteresis (TCH) model with the introduction of the transfer fit (TF) method, this work applies the TF TCH for OCV-based SOC correction. The TF method plays a key role as it enables the cell-specific adaptation of an existing TCH model - ageing update is achieved with solely 12 (SOC/OCV) measurement points. With the precise hysteresis model, the developed framework successfully corrects the faulty SOC history, which could originate from a vehicle data logger. Given that two OCV measurement points are available that arbitrarily lie within the SOC history, the SOC correction is achieved by minimising the voltage deviation between the measurement points and the TCH model’s simulation. Identifying the two SOC parameters shift and scale enables subsequent SOC estimation until an additional OCV measurement is available for a further update. The functionality of the presented SOC correction framework is demonstrated using two validation profiles.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"28 ","pages":"Article 100151"},"PeriodicalIF":4.5,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000179/pdfft?md5=df1f989419b231124ebdbb3a25c57dc9&pid=1-s2.0-S2666248524000179-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason K. Ostanek , Nicholas R. Baehl , Mohammad Parhizi , Judith A. Jeevarajan
{"title":"Hot gas impingement and radiation on neighboring surfaces from venting and combustion in a package of 18650 cells","authors":"Jason K. Ostanek , Nicholas R. Baehl , Mohammad Parhizi , Judith A. Jeevarajan","doi":"10.1016/j.powera.2024.100150","DOIUrl":"https://doi.org/10.1016/j.powera.2024.100150","url":null,"abstract":"<div><p>A quasi-steady, CFD-based modeling approach is employed to investigate the heat loading within a small package of twenty-five 18650 Li-ion cells. The quasi-steady approach allows for computationally efficient simulations to capture the compressible and turbulent flow field through the safety vent structure and out into the space surrounding a failing cell. Combustion of vent gases leads to high heat loading on neighboring cells and nearby surfaces. Heat transfer mechanisms within the enclosure include convection from hot gases, radiation from the participating medium, and radiation exchange between surfaces. Simulations provide insight into the magnitude of each heat transfer mechanism, and the spatial distribution of heat flux on nearby cells and surfaces within the pack. The complex geometry of the safety vent geometry resulted in an asymmetric jet flow pattern, which induces highly localized impingement heat transfer on specific cells within the enclosure. Radiation from hot surfaces was more significant than radiation from hot gases and soot to neighboring cells. The quasi-steady simulations may be used in the future to develop reduced-order heat transfer models that include the effects of venting and combustion on propagating failure.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"28 ","pages":"Article 100150"},"PeriodicalIF":4.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000167/pdfft?md5=6e1709a7d32663c32ceee68f69ab779f&pid=1-s2.0-S2666248524000167-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141239530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}