通过对固体电解质的优化,提高了双电解质锂离子电容器的循环寿命和容量保持率

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Omar Gómez Rojas , Wataru Sugimoto
{"title":"通过对固体电解质的优化,提高了双电解质锂离子电容器的循环寿命和容量保持率","authors":"Omar Gómez Rojas ,&nbsp;Wataru Sugimoto","doi":"10.1016/j.powera.2025.100179","DOIUrl":null,"url":null,"abstract":"<div><div>Battery-supercapacitor hybrid devices bridge the gap between batteries and supercapacitors, offering high energy and power densities with excellent cycling stability. However, integrating their distinct energy storage mechanisms remains challenging. A strategy to address this challenge is advanced interphase engineering at the electrode|solid electrolyte junction. In this work, we present an optimized solid electrolyte (anolyte) for a layered graphite anode, designed to enhance lithium intercalation, mitigate lithium plating, and promote the formation of a stable Solid-Electrolyte Interphase (SEI) for a Lithium-Ion Capacitor (LiC). This approach significantly improves capacity retention and long-term stability, reaching 100 % over 3000 cycles and maintaining 96.6 % of the maximum capacity at 10,000 cycles, while also maintaining the anode potential below the operating voltage of lithiated graphite (&lt;0.25 V vs Li|Li<sup>+</sup>). These findings demonstrate a step toward high-performance hybrid capacitors with improved durability and energy storage capabilities.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"33 ","pages":"Article 100179"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced cycle life and capacity retention of dual electrolyte Li-ion capacitor through optimization of the solid electrolyte\",\"authors\":\"Omar Gómez Rojas ,&nbsp;Wataru Sugimoto\",\"doi\":\"10.1016/j.powera.2025.100179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Battery-supercapacitor hybrid devices bridge the gap between batteries and supercapacitors, offering high energy and power densities with excellent cycling stability. However, integrating their distinct energy storage mechanisms remains challenging. A strategy to address this challenge is advanced interphase engineering at the electrode|solid electrolyte junction. In this work, we present an optimized solid electrolyte (anolyte) for a layered graphite anode, designed to enhance lithium intercalation, mitigate lithium plating, and promote the formation of a stable Solid-Electrolyte Interphase (SEI) for a Lithium-Ion Capacitor (LiC). This approach significantly improves capacity retention and long-term stability, reaching 100 % over 3000 cycles and maintaining 96.6 % of the maximum capacity at 10,000 cycles, while also maintaining the anode potential below the operating voltage of lithiated graphite (&lt;0.25 V vs Li|Li<sup>+</sup>). These findings demonstrate a step toward high-performance hybrid capacitors with improved durability and energy storage capabilities.</div></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"33 \",\"pages\":\"Article 100179\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248525000137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248525000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电池-超级电容器混合装置弥合了电池和超级电容器之间的差距,提供高能量和功率密度,具有出色的循环稳定性。然而,整合它们独特的能量存储机制仍然具有挑战性。解决这一挑战的策略是在电极|固体电解质结处进行先进的相间工程。在这项工作中,我们提出了一种用于层状石墨阳极的优化固体电解质(anolyte),旨在增强锂嵌入,减轻锂镀层,并促进锂离子电容器(LiC)稳定的固体电解质界面(SEI)的形成。这种方法显著提高了容量保持率和长期稳定性,在3000次循环中达到100%,在10,000次循环中保持96.6%的最大容量,同时保持阳极电位低于锂化石墨的工作电压(<0.25 V vs Li|Li+)。这些发现向高性能混合电容器迈出了一步,提高了耐用性和能量存储能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced cycle life and capacity retention of dual electrolyte Li-ion capacitor through optimization of the solid electrolyte
Battery-supercapacitor hybrid devices bridge the gap between batteries and supercapacitors, offering high energy and power densities with excellent cycling stability. However, integrating their distinct energy storage mechanisms remains challenging. A strategy to address this challenge is advanced interphase engineering at the electrode|solid electrolyte junction. In this work, we present an optimized solid electrolyte (anolyte) for a layered graphite anode, designed to enhance lithium intercalation, mitigate lithium plating, and promote the formation of a stable Solid-Electrolyte Interphase (SEI) for a Lithium-Ion Capacitor (LiC). This approach significantly improves capacity retention and long-term stability, reaching 100 % over 3000 cycles and maintaining 96.6 % of the maximum capacity at 10,000 cycles, while also maintaining the anode potential below the operating voltage of lithiated graphite (<0.25 V vs Li|Li+). These findings demonstrate a step toward high-performance hybrid capacitors with improved durability and energy storage capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信