基于深度学习的二维图像燃料电池催化剂层的三维生成与重建

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Xuanchen Liu , Kayoung Park , Magnus So , Shota Ishikawa , Takeshi Terao , Kazuhiko Shinohara , Chiyuri Komori , Naoki Kimura , Gen Inoue , Yoshifumi Tsuge
{"title":"基于深度学习的二维图像燃料电池催化剂层的三维生成与重建","authors":"Xuanchen Liu ,&nbsp;Kayoung Park ,&nbsp;Magnus So ,&nbsp;Shota Ishikawa ,&nbsp;Takeshi Terao ,&nbsp;Kazuhiko Shinohara ,&nbsp;Chiyuri Komori ,&nbsp;Naoki Kimura ,&nbsp;Gen Inoue ,&nbsp;Yoshifumi Tsuge","doi":"10.1016/j.powera.2022.100084","DOIUrl":null,"url":null,"abstract":"<div><p>The catalyst layer (CL) being the site of electrochemical reactions, is the core subunit of the membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFCs). Thus, the porous structure of the CL has a significant influence on oxygen transfer resistance and affects the charge/discharge performance. In this study, the three-dimensional (3D) porous structure of the catalyst layer is reconstructed based on the deep convolutional generative adversarial network (DCGAN) deep learning method, utilizing focused ion beam scanning electron microscopy (FIB-SEM) microstructure graphs as training data. Each set of spatial-continuous microstructure graphs, generated by DCGAN with interpolation in latent space, is applied to build a unique 3D microstructure of the CL without the use of real FIB-SEM data. Meanwhile, distinct interpolation conditions in the DCGAN are discussed to optimize the ultimate structure by approaching the structural information to real data, including that of porosity, particle size distribution, and tortuosity. Moreover, the comparison of real and generated structural data reveal that the data generated by DCGAN shows an adjacency relationship with real data, indicating its potential applicability in the field of electrochemical simulation with reduced situational costs.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"14 ","pages":"Article 100084"},"PeriodicalIF":5.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000026/pdfft?md5=1f471bd1216a9bffc544d14f1103c35a&pid=1-s2.0-S2666248522000026-main.pdf","citationCount":"2","resultStr":"{\"title\":\"3D generation and reconstruction of the fuel cell catalyst layer using 2D images based on deep learning\",\"authors\":\"Xuanchen Liu ,&nbsp;Kayoung Park ,&nbsp;Magnus So ,&nbsp;Shota Ishikawa ,&nbsp;Takeshi Terao ,&nbsp;Kazuhiko Shinohara ,&nbsp;Chiyuri Komori ,&nbsp;Naoki Kimura ,&nbsp;Gen Inoue ,&nbsp;Yoshifumi Tsuge\",\"doi\":\"10.1016/j.powera.2022.100084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The catalyst layer (CL) being the site of electrochemical reactions, is the core subunit of the membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFCs). Thus, the porous structure of the CL has a significant influence on oxygen transfer resistance and affects the charge/discharge performance. In this study, the three-dimensional (3D) porous structure of the catalyst layer is reconstructed based on the deep convolutional generative adversarial network (DCGAN) deep learning method, utilizing focused ion beam scanning electron microscopy (FIB-SEM) microstructure graphs as training data. Each set of spatial-continuous microstructure graphs, generated by DCGAN with interpolation in latent space, is applied to build a unique 3D microstructure of the CL without the use of real FIB-SEM data. Meanwhile, distinct interpolation conditions in the DCGAN are discussed to optimize the ultimate structure by approaching the structural information to real data, including that of porosity, particle size distribution, and tortuosity. Moreover, the comparison of real and generated structural data reveal that the data generated by DCGAN shows an adjacency relationship with real data, indicating its potential applicability in the field of electrochemical simulation with reduced situational costs.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"14 \",\"pages\":\"Article 100084\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000026/pdfft?md5=1f471bd1216a9bffc544d14f1103c35a&pid=1-s2.0-S2666248522000026-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248522000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

催化剂层(CL)是聚合物电解质燃料电池(pefc)中膜电极组件(MEA)的核心亚基,是电化学反应的场所。因此,CL的多孔结构对氧传递阻力有显著影响,影响充放电性能。本研究利用聚焦离子束扫描电子显微镜(FIB-SEM)微观结构图作为训练数据,基于深度卷积生成对抗网络(DCGAN)深度学习方法重构催化剂层的三维(3D)多孔结构。在不使用真实FIB-SEM数据的情况下,利用DCGAN生成的每组空间连续微观结构图,在潜在空间内进行插值,构建独特的CL三维微观结构。同时,讨论了DCGAN中不同的插值条件,通过将结构信息接近于实际数据,包括孔隙度、粒度分布和扭曲度等,来优化最终结构。此外,将真实结构数据与生成的结构数据进行对比,发现DCGAN生成的数据与真实数据呈现邻接关系,表明其在降低情景成本的电化学模拟领域具有潜在的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D generation and reconstruction of the fuel cell catalyst layer using 2D images based on deep learning

The catalyst layer (CL) being the site of electrochemical reactions, is the core subunit of the membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFCs). Thus, the porous structure of the CL has a significant influence on oxygen transfer resistance and affects the charge/discharge performance. In this study, the three-dimensional (3D) porous structure of the catalyst layer is reconstructed based on the deep convolutional generative adversarial network (DCGAN) deep learning method, utilizing focused ion beam scanning electron microscopy (FIB-SEM) microstructure graphs as training data. Each set of spatial-continuous microstructure graphs, generated by DCGAN with interpolation in latent space, is applied to build a unique 3D microstructure of the CL without the use of real FIB-SEM data. Meanwhile, distinct interpolation conditions in the DCGAN are discussed to optimize the ultimate structure by approaching the structural information to real data, including that of porosity, particle size distribution, and tortuosity. Moreover, the comparison of real and generated structural data reveal that the data generated by DCGAN shows an adjacency relationship with real data, indicating its potential applicability in the field of electrochemical simulation with reduced situational costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信