Ziyu Song , Xingxing Wang , Hao Wu , Wenfang Feng , Jin Nie , Hailong Yu , Xuejie Huang , Michel Armand , Heng Zhang , Zhibin Zhou
{"title":"可充电锂电池用双(氟磺酰)亚胺基电解质:展望","authors":"Ziyu Song , Xingxing Wang , Hao Wu , Wenfang Feng , Jin Nie , Hailong Yu , Xuejie Huang , Michel Armand , Heng Zhang , Zhibin Zhou","doi":"10.1016/j.powera.2022.100088","DOIUrl":null,"url":null,"abstract":"<div><p>The inherent properties of non-aqueous electrolytes are highly associated with the identity of salt anions. To build highly conductive and chemically/electrochemically robust electrolytes for lithium-ion batteries (LIBs) and rechargeable lithium metal batteries (RLMBs), various kinds of weakly coordinating anions have been proposed as counterparts of lithium salts and ionic liquids. Among them, bis(fluorosulfonyl)imide anion ([N(SO<sub>2</sub>F)<sub>2</sub>]<sup>−</sup>, FSI<sup>−</sup>) has aroused special attention in battery field due to the unique physical, chemical, and electrochemical properties of the FSI-based electrolytes. Herein, an overview on the synthetic methodologies of the FSI-based salts (e.g., alkali metal salts, ionic liquids) is provided, and their applications in LIBs and RLMBs are also updated. Future directions on developing FSI-based and/or FSI-derived electrolytes are presented. The present work is anticipated to inspire the design and screening of new anions for battery use, particularly, those stemming from sulfonimide anions.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"14 ","pages":"Article 100088"},"PeriodicalIF":5.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000063/pdfft?md5=85b7866189cd2bc48f9a90c7ee459f30&pid=1-s2.0-S2666248522000063-main.pdf","citationCount":"15","resultStr":"{\"title\":\"Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective\",\"authors\":\"Ziyu Song , Xingxing Wang , Hao Wu , Wenfang Feng , Jin Nie , Hailong Yu , Xuejie Huang , Michel Armand , Heng Zhang , Zhibin Zhou\",\"doi\":\"10.1016/j.powera.2022.100088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The inherent properties of non-aqueous electrolytes are highly associated with the identity of salt anions. To build highly conductive and chemically/electrochemically robust electrolytes for lithium-ion batteries (LIBs) and rechargeable lithium metal batteries (RLMBs), various kinds of weakly coordinating anions have been proposed as counterparts of lithium salts and ionic liquids. Among them, bis(fluorosulfonyl)imide anion ([N(SO<sub>2</sub>F)<sub>2</sub>]<sup>−</sup>, FSI<sup>−</sup>) has aroused special attention in battery field due to the unique physical, chemical, and electrochemical properties of the FSI-based electrolytes. Herein, an overview on the synthetic methodologies of the FSI-based salts (e.g., alkali metal salts, ionic liquids) is provided, and their applications in LIBs and RLMBs are also updated. Future directions on developing FSI-based and/or FSI-derived electrolytes are presented. The present work is anticipated to inspire the design and screening of new anions for battery use, particularly, those stemming from sulfonimide anions.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"14 \",\"pages\":\"Article 100088\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000063/pdfft?md5=85b7866189cd2bc48f9a90c7ee459f30&pid=1-s2.0-S2666248522000063-main.pdf\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248522000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective
The inherent properties of non-aqueous electrolytes are highly associated with the identity of salt anions. To build highly conductive and chemically/electrochemically robust electrolytes for lithium-ion batteries (LIBs) and rechargeable lithium metal batteries (RLMBs), various kinds of weakly coordinating anions have been proposed as counterparts of lithium salts and ionic liquids. Among them, bis(fluorosulfonyl)imide anion ([N(SO2F)2]−, FSI−) has aroused special attention in battery field due to the unique physical, chemical, and electrochemical properties of the FSI-based electrolytes. Herein, an overview on the synthetic methodologies of the FSI-based salts (e.g., alkali metal salts, ionic liquids) is provided, and their applications in LIBs and RLMBs are also updated. Future directions on developing FSI-based and/or FSI-derived electrolytes are presented. The present work is anticipated to inspire the design and screening of new anions for battery use, particularly, those stemming from sulfonimide anions.