M. Haueis, J. Dual, C. Cavalloni, M. Gnielka, R. Buser
{"title":"Packaged bulk micromachined resonant force sensor for high-temperature applications","authors":"M. Haueis, J. Dual, C. Cavalloni, M. Gnielka, R. Buser","doi":"10.1117/12.382278","DOIUrl":"https://doi.org/10.1117/12.382278","url":null,"abstract":"We present a packaged micro resonator for static load measurement under high temperature, performing with high precision and a resolution better than 100 ppm. There is an industrial need for such measurement tasks, however, such sensing cells are not available so far. To minimize temperatures stress we developed an all-in-silicon, in difference to micro machined resonant force sensors, which have been published. We propose a force sensor where load coupling, the excitation and detection of the vibration of the micro resonator are integrated in one and the same single crystal silicon package. The complete single crystal design together with a fiber-optical on-chip detection method will allow measurements at high temperatures. A considerable degree of freedom for the resonator's shape design, as needed for the investigation of filer mechanisms, is given by a DRIE fabrication method.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114708735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photovoltaic miniarrays assembled using multichip module technology (MCM)","authors":"P. R. Ortega, L. Castañer","doi":"10.1117/12.382285","DOIUrl":"https://doi.org/10.1117/12.382285","url":null,"abstract":"The integration of small arrays of c-Si photovoltaic devices using a flip-chip Multichip Module technology is reported. A number of arrays made of 15 series-connected 2mm2 photovoltaic cells have been assembled, achieving a packaging density of 40 chips/cm2. Different cell geometries and several fabrication details have been investigated. Preliminary measurements of the dark characteristics are shown with good ideality factor values, thereby indicating that the interconnection of the devices did not jeopardize the properties of the individual cell. More than 6.5 V in open circuit conditions were typically measured, and simulations showed that for monochomatic illumination in the IR region above 60 mA/cm2 could be achieved for 100mW/cm2 of incoming light. Exposure to commercial IR lamp placed at 4cm distance from the miniarray generated approximately 1mW of power at 6.5V.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121740292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Chowdhury, G. Jullien, M. Ahmadi, W. Miller, D. Keating, N. Finch
{"title":"Acoustic and magnetic MEMS components for a hearing aid instrument","authors":"S. Chowdhury, G. Jullien, M. Ahmadi, W. Miller, D. Keating, N. Finch","doi":"10.1117/12.382273","DOIUrl":"https://doi.org/10.1117/12.382273","url":null,"abstract":"The design of two microelectromechanical (MEMS) devices that form pat of a micro acousto-magnetic transducer for use with a hearing-aid instrument is described in this paper. The transducer will convert acoustical energy into an electrical signal using a MEMS realization of a capacitive microphone. The output signal from the microphone undergoes signal conditioning and processing in order to drive a MEMS electromagnetic actuator. The resultant magnetic fid is used to exert a force on a high coercivity permanent micro magnet that has been implanted on the round window of the cochlea. The motion of the implanted magnet will develop traveling waves on the basilar membrane inside the cochlea to give a hearing capability. A high-sensitivity MEMS based capacitor microphone is designed using a polysilicon Germanium diaphragm. The microphone is constructed using a combination of surface and bulk micro machining techniques, in a single wafer process. The microphone diaphragm has a proposed thickness of 0.7 micrometers , an area of 2.6 mm2, an air gap of 3.0 micrometers and a 1 micrometers thick silicon nitride backplate with acoustical ports. An output voltage signal is obtained from the capacitor microphone using a capacitive voltage divider network and amplified by a simple source follower circuit. D","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126501013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Signal processing electronics for a capacitive microsensor","authors":"G. Amendola, G. Lu","doi":"10.1117/12.382282","DOIUrl":"https://doi.org/10.1117/12.382282","url":null,"abstract":"An interface circuit in a 0.8-micrometers CMOS process for the on- chip integration of a capacitive micro-sensor used as a microphone is presented. In order to circumvent 1/f noise contributions and to improve the signal/noise ratio, a synchronous modulation-demodulation technique has been applied. For the implementation of this technique, we have studied and designed several functional block, such as modulator with signal conversion, low-noise amplifier, demodulator, etc. To deal with problems related to dispersion of intrinsic capacitance of the sensor, a feedback compensating solution is suggested. The designed circuit has a sensibility of 1200 V/pF, with a minimum detectable capacitance variation of 2 10-6 pF.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"82 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120840500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of the orientation of thermal deformation in the surface-micromachined membrane of gas microsensors","authors":"Marius Dumitrescu, C. Cobianu, A. Pascu","doi":"10.1117/12.382314","DOIUrl":"https://doi.org/10.1117/12.382314","url":null,"abstract":"Within this paper we perform a simulation study of the 'bimetal' effects for the silicon-silicon dioxide membrane suspended in different manners. For this purpose, a commercial, COSMOS/M program working with finite element method has been used. We investigated the dependence of the value and orientation of the displacements of the bi-layer type membrane as a function of temperature, temperature gradient, geometrical dimensions, expansion coefficients and type of membrane support. The test structure for this simulation consists of a square SiO2 membrane of 100 X 100 micrometers 2 with 10micrometers for each layer. The connection of the membrane to the bulk silicon was performed by different manners as follows: (i) by four horizontal bridges, (ii) by four vertical legs or (iii) by its four edges. From simulation study, we have obtained the effect of the above variables on the value and orientation of the membrane deformation, as follows: a) The temperature and gradient temperature, layer thickness and rigidity of the material lead to modification of the value displacements of the membrane; b) Type of the membrane support lead to modification of the both value and orientation of t he deformation of the membrane. This study of the membrane deformation can be successfully used for designing a new gas structure based on surface micro machining and hopefully with low power consumption and predicted deformation.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"167 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134232935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Oppermann, C. Kallmayer, M. Klein, R. Aschenbrenner, H. Reichl
{"title":"Advanced flip chip technologies in rf, microwave, and MEMS applications","authors":"H. Oppermann, C. Kallmayer, M. Klein, R. Aschenbrenner, H. Reichl","doi":"10.1117/12.382326","DOIUrl":"https://doi.org/10.1117/12.382326","url":null,"abstract":"A variety of flip chip technologies are available today which differ in bumping material, substrate type, pad metallization and joining method. They are found in packages as well as on multichip modules and directly flip chip bonded on the board. Components including flip chip like bal grid arrays and chip size packages are introduced. Flip chip is the most favored assembly technology for high frequency applications due to the small parasitic of the short bump interconnect. High performance packages for optoelectronic devices using self-alignment during a fluxless reflow soldering are shown as well as the integration of MMICs. High density multichip modules have been fabricated for large pixel defectors of a nuclear detector with eight Chips and more than 46000 I/Os with an acceptable yield. Flip chip technology is a very flexible assembly method for different applications. Variations of the bump structure can be used for MEMS packaging as well and it was demonstrated by the assembly of a thin membrane to form an absolute pressure sensor with a vacuum enclosure. For different packaging requirements the appropriate technology should be chosen very carefully. An overview will be given for different bumping and flip chip joining methods suitable for high volume production as well as for prototyping. Wafer bumping methods will focus on electro less deposition of nickel/gold as well as on electroplating of gold, SnPb and AuSn solders. For rapid prototyping single chip bumping methods are described. Examples of different joining methods - soldering, adhesive bonding and thermocompression bonding - will be shown.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129386029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust and versatile software system for optimal design of MEMS structures","authors":"B. Kwak, S. H. Lee, J. Huh","doi":"10.1117/12.382290","DOIUrl":"https://doi.org/10.1117/12.382290","url":null,"abstract":"A CAD-integrated total design system for MEMS is developed which can perform analysis and design for mechanical performance of a MEMS structure. The software works in a parametric CAD platform and makes users to do from CAD modeling and analysis to design optimization. Basic philosophy is to assure robustness, versatility and user friendliness. To satisfy these requirements; 1) Design variables are selectable directly form CAD model, 2) Commercial codes are utilized as many as available, and 3) Design sensitivity analysis must be simple and robust. Commercial finite element codes and some newly developed modules are integrated in the system for analysis. For design sensitivity analysis, two approaches were implemented: finite difference method and the Taguchi method. The approximate methods adopted seem to be simple and robust, which can be applied to design of complex practical structures. The design sensitivity analysis by finite difference method, with nonlinear programming and trade-off study, gives satisfactory results. The Taguchi method module is integrated for robust optimal design of MEMS structure. Although it is not meant to find the exact optimum point, it is applicable to practical problems where performance characteristics are hard to evaluate, since this does not require any derivative information. Two examples are taken to examine performance of the developed design tool and proposed methodology. It relieves much of the difficulties often met in conventional design works and has shown practicability for structural design of MEMS.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130937392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Pinel, J. Tasselli, A. Marty, J. Bailbé, E. Beyne, R. Van Hoof, S. Marco, S. Leseduarte, O. Vendier, A. Coello-Vera
{"title":"New ultrathin 3D integration technique: technological and thermal investigations","authors":"S. Pinel, J. Tasselli, A. Marty, J. Bailbé, E. Beyne, R. Van Hoof, S. Marco, S. Leseduarte, O. Vendier, A. Coello-Vera","doi":"10.1117/12.382262","DOIUrl":"https://doi.org/10.1117/12.382262","url":null,"abstract":"A new vertical chip integration is proposed, based on the UTCS concept. It consists in stacking thinned chips on top of a silicon substrate. Lateral and vertical metal interconnections and the thinned chips are embedded in BCB layers. This wafer scale integration technique is presented. Thermal behavior of such stacked structure is also discussed.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"58 20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116544574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Technical comparison of micro-electrodischarge machining, microdrilling, and copper vapor laser machining for the fabrication of ink jet nozzles","authors":"D. Allen, H. Almond, Peter Logan","doi":"10.1117/12.382322","DOIUrl":"https://doi.org/10.1117/12.382322","url":null,"abstract":"Ink jet nozzles require accurate definition and smooth surface finish to promote laminar flow of ink and prevent turbulence. We have fabricated ink jet nozzles by three different fabrication ttechniques to evaluate the characteristics of each technique and assess the differences between them. Scanning electron micrographs illustrate the differences between the three types of nozzle produced and these have been quantified where possible. The machining times for these fabrication processes are also compared.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125864797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-thermal-impedance beams for suspended MEMS","authors":"S. Mir, B. Charlot, F. Parrain, D. Veychard","doi":"10.1117/12.382266","DOIUrl":"https://doi.org/10.1117/12.382266","url":null,"abstract":"Suspended thermal MEMS is one of the major domains of application of CMOS-compatible bulk-micro machining technologies. In some applications, a tradeoff much be reached between the mechanical strength of the micro structure and the thermal losses through the support beams. This paper illustrates how suspended MEMS can be strengthened by means of additional support beams which have a very high thermal impedance, thus having a very small impact in the thermal behavior of the micro structure. A high thermal impedance beam can be considered as a new MEMS design cell. The use of this cell in the design of an electro thermal converter with long time constant is illustrated.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126808492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}