Advanced Nanobiomed Research最新文献

筛选
英文 中文
Recent Progress in the Development of Flexible Wearable Electrodes for Electrocardiogram Monitoring During Exercise 开发用于运动时心电图监测的柔性可穿戴电极的最新进展
IF 4
Advanced Nanobiomed Research Pub Date : 2024-05-02 DOI: 10.1002/anbr.202300169
Tae Woog Kang, Jimin Lee, Youngjin Kwon, Yoon Jae Lee, Woon-Hong Yeo
{"title":"Recent Progress in the Development of Flexible Wearable Electrodes for Electrocardiogram Monitoring During Exercise","authors":"Tae Woog Kang,&nbsp;Jimin Lee,&nbsp;Youngjin Kwon,&nbsp;Yoon Jae Lee,&nbsp;Woon-Hong Yeo","doi":"10.1002/anbr.202300169","DOIUrl":"10.1002/anbr.202300169","url":null,"abstract":"<p>Electrocardiogram (ECG) monitoring has recently been an important indicator of cardiac health diagnosis. In the past, ECG could be measured under limited conditions in hospitals with 12-lead electrode systems. Recently, portable and wearable devices have offered continuous, real-time monitoring of ECG signals in real life. However, developing wearable ECG sensors that provide low-motion artifacts and high-quality signals during exercise conditions is still challenging. Herein, this review reports a systematic summary of the key characteristics, properties, and requirements of flexible wearable ECG devices for the early diagnosis of heart dysfunction in dynamic motions, including exercise. In addition, the recent progress in controlling sensor adhesion and novel materials for designing dry electrodes are discussed to improve ECG signal quality in exercise. Finally, various aspects of electrode developmental challenges and limitations are reviewed, and research directions for future studies are discussed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141022610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Microfluidic Strategy to Capture Antigen-Specific High-Affinity B Cells 捕获抗原特异性高亲和性 B 细胞的微流控策略
IF 3.4
Advanced Nanobiomed Research Pub Date : 2024-04-26 DOI: 10.1002/anbr.202300101
Ahmed M. Alhassan, Venktesh S. Shirure, Jean Luo, Bryan B. Nguyen, Zachary A. Rollins, Bhupinder S. Shergill, Xiangdong Zhu, Nicole Baumgarth, Steven C. George
{"title":"A Microfluidic Strategy to Capture Antigen-Specific High-Affinity B Cells","authors":"Ahmed M. Alhassan,&nbsp;Venktesh S. Shirure,&nbsp;Jean Luo,&nbsp;Bryan B. Nguyen,&nbsp;Zachary A. Rollins,&nbsp;Bhupinder S. Shergill,&nbsp;Xiangdong Zhu,&nbsp;Nicole Baumgarth,&nbsp;Steven C. George","doi":"10.1002/anbr.202300101","DOIUrl":"https://doi.org/10.1002/anbr.202300101","url":null,"abstract":"<p>Assessing B cell affinity to pathogen-specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen-specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time-consuming, and assess antibody affinity under zero force. Recent findings indicate that force may influence BCR-antigen binding interactions and thus immune status. Herein, a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen-specific BCR binding affinity of five hemagglutinin-specific hybridomas from 65 to 650 pN force range is designed. The results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen-specific high-affinity B cells. The affinity of the membrane-bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR-antigen-binding properties and identify antigen-specific high-affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost-effective way of identifying individual B cells as antibody sources for a range of clinical applications.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein–Protein Interactions in the Tumor Microenvironment 用于调节肿瘤微环境中蛋白质-蛋白质相互作用的多价 DNA 纳米粒子/肽混合分子模式
IF 4
Advanced Nanobiomed Research Pub Date : 2024-04-25 DOI: 10.1002/anbr.202300159
Jessica A. Roman, Michael Y. Girgis, Rocìo S. Prisby, Robyn P. Araujo, Paul Russo, Esra Oktay, Alessandra Luchini, Lance A. Liotta, Remi Veneziano, Amanda Haymond
{"title":"A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein–Protein Interactions in the Tumor Microenvironment","authors":"Jessica A. Roman,&nbsp;Michael Y. Girgis,&nbsp;Rocìo S. Prisby,&nbsp;Robyn P. Araujo,&nbsp;Paul Russo,&nbsp;Esra Oktay,&nbsp;Alessandra Luchini,&nbsp;Lance A. Liotta,&nbsp;Remi Veneziano,&nbsp;Amanda Haymond","doi":"10.1002/anbr.202300159","DOIUrl":"https://doi.org/10.1002/anbr.202300159","url":null,"abstract":"<p>Despite success in the treatment of some blood cancers and melanoma, positive response to immunotherapies remains disappointingly low in the treatment of solid tumors. The context of the molecular crosstalk within the tumor microenvironment can result in dysfunctional immune cell activation, leading to tumor tolerance and progression. Although modulating these protein–protein interactions (PPIs) is vital for appropriate immune cell activation and recognition, targeting nonenzymatic PPIs has proven to be fraught with challenges. To address this, a synthetic, multivalent molecular modality comprised of small interfering peptides precisely hybridized to a semirigid DNA scaffold is introduced. Herein, a prototype of this modality that targets the IL-33/ST2 signaling axis, which is associated with tumor tolerance and immunotherapy treatment failure is described. Using peptides that mimic the specific high-energy “hotspot” residues with which the IL-33/ST2 coreceptor, IL-1RAcP, interacts with the initial binary complex, this platform is shown to effectively bind IL-33/ST2 with a <i>K</i><sub>D</sub> of 110 n<span>m</span>. Additionally, this molecule effectively abrogates signal transduction in cell models at high nanomolar concentrations and is exquisitely selective for this complex over structurally similar PPIs within the same cytokine superfamily.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in the Biomedical Applications of Copper Nanomaterial-Mediated Cuproptosis 纳米铜材料介导的杯突症生物医学应用的最新进展
IF 4
Advanced Nanobiomed Research Pub Date : 2024-04-24 DOI: 10.1002/anbr.202400018
Sijia Wu, Qian Wang, Yuhao Li, Baolin Liu, Yuqing Miao
{"title":"Recent Advances in the Biomedical Applications of Copper Nanomaterial-Mediated Cuproptosis","authors":"Sijia Wu,&nbsp;Qian Wang,&nbsp;Yuhao Li,&nbsp;Baolin Liu,&nbsp;Yuqing Miao","doi":"10.1002/anbr.202400018","DOIUrl":"10.1002/anbr.202400018","url":null,"abstract":"<p>Nanomedicine-induced cancer cell death has become a prominent area of research in the life sciences field in recent years. The concept of cuproptosis was first proposed in 2022. Copper homeostasis in organisms is tightly regulated by protein transporters and molecular chaperones. Disruptions in copper homeostasis can adversely affect mitochondrial respiration and disrupt other physiological processes, leading to cytotoxicity. Therefore, researchers have designed and refined copper-based nanomaterials to induce cuproptosis and assess their effects on cancer treatment. While several reviews on cuproptosis exist, they primarily delve into its molecular mechanisms. This review begins with elucidating the metabolism and homeostasis of copper in the body. Subsequently, the latest advancements in copper nanomaterial-induced cuproptosis for cancer treatment and antimicrobial purposes is summarized. Finally, a comprehensive summary and outlook on the subject is provided. The goal with this review is to assist researchers in gaining a deeper understanding of the interaction between nanomaterials and cuproptosis, thereby offering new perspectives for designing novel nanomaterials to induce cuproptosis.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavior of Self-Disintegrating Microparticles at the Air/Mucus Interface 自解体微粒在空气/粘液界面上的行为
IF 4
Advanced Nanobiomed Research Pub Date : 2024-04-11 DOI: 10.1002/anbr.202300153
Fabio Henkel, Leonie Deßloch, Ufuk Gürer, Benjamin Winkeljann, Matthias Marczynski, Olivia M. Merkel, Oliver Lieleg
{"title":"Behavior of Self-Disintegrating Microparticles at the Air/Mucus Interface","authors":"Fabio Henkel,&nbsp;Leonie Deßloch,&nbsp;Ufuk Gürer,&nbsp;Benjamin Winkeljann,&nbsp;Matthias Marczynski,&nbsp;Olivia M. Merkel,&nbsp;Oliver Lieleg","doi":"10.1002/anbr.202300153","DOIUrl":"https://doi.org/10.1002/anbr.202300153","url":null,"abstract":"<p>In recent years, highly specialized nanoscopic drug carriers have been developed, which can, e.g., traverse biological barriers, protect drugs against harsh physiological conditions, and release such drugs in a controlled manner. However, for the delivery of particles <i>via</i> the respiratory pathway, aerodynamic diameters in the range of several micrometers are required to achieve good lung deposition and biodistribution. To combine the favorable properties of inhalable, micron-sized particles with the advantages of nanosized drug carriers, herein, dry-powder, hybrid microparticles (h-μPs), which disintegrate upon contact with moist surfaces (as present in the lung) to release the embedded nanoparticles into the mucosa, are introduced. Furthermore, a microfluidic setup, which mimics the air–gel interface of the mucosal airway epithelium, is presented. With this setup, the interaction of airborne h-μPs with the mucosal interface on a microscopic level is investigated. In detail, the influence of the h-μP charge on their deposition efficiency is tested and it is found that this process is governed by a combination of electrostatic interactions between the mucosal surface and the h-μPs as well as hygroscopic effects. Thus, this approach can help to optimize inhalable drug carriers to increase the efficiency of pulmonary drug administration <i>via</i> the respiratory pathway.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pH-Sensitive Smart Monomer Prevents Oral Cancer Progression 对 pH 值敏感的智能单体可预防口腔癌进展
IF 3.4
Advanced Nanobiomed Research Pub Date : 2024-04-10 DOI: 10.1002/anbr.202470041
Shiyu Liu, Jing Chen, Xuedong Zhou, Yu Hao, Yawen Zong, Yangyang Shi, Xiao Guo, Qi Han, Mingyun Li, Bolei Li, Lei Cheng
{"title":"A pH-Sensitive Smart Monomer Prevents Oral Cancer Progression","authors":"Shiyu Liu,&nbsp;Jing Chen,&nbsp;Xuedong Zhou,&nbsp;Yu Hao,&nbsp;Yawen Zong,&nbsp;Yangyang Shi,&nbsp;Xiao Guo,&nbsp;Qi Han,&nbsp;Mingyun Li,&nbsp;Bolei Li,&nbsp;Lei Cheng","doi":"10.1002/anbr.202470041","DOIUrl":"https://doi.org/10.1002/anbr.202470041","url":null,"abstract":"<p><b>Cancer Treatment</b>\u0000 </p><p>Oral cancer shows an acidic tumor microenvironment. A pH-sensitive tertiary amine monomer dodecylmethylaminoethyl methacrylate (DMAEM) has been designed, which displays reversible protonation and deprotonation reactions according to the pH changes. In the acidic microenvironment DMAEM could be protonated into strong cytotoxic quaternary ammonium monomers - Dimethylaminododecyl methacrylate (DMADDM). By this means, DMAEM inhibits the progression of oral cancer. More details can be found in article number 2300119 by Bolei Li, Lei Cheng, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Manganese Carbonyl Loaded Upconversion Nanoparticles for Near-Infrared-Triggered Carbon Monoxide and Mn2+ Delivery 开发负载羰基锰的上转换纳米粒子,用于近红外触发的一氧化碳和 Mn2+ 传输
IF 4
Advanced Nanobiomed Research Pub Date : 2024-04-10 DOI: 10.1002/anbr.202300171
Yile Zheng, Yi Wei, Yuying Yang, Xiang Wen, Cai Yang, Yating Xiao, Zhen Du, Xiangsheng Liu
{"title":"Development of Manganese Carbonyl Loaded Upconversion Nanoparticles for Near-Infrared-Triggered Carbon Monoxide and Mn2+ Delivery","authors":"Yile Zheng,&nbsp;Yi Wei,&nbsp;Yuying Yang,&nbsp;Xiang Wen,&nbsp;Cai Yang,&nbsp;Yating Xiao,&nbsp;Zhen Du,&nbsp;Xiangsheng Liu","doi":"10.1002/anbr.202300171","DOIUrl":"10.1002/anbr.202300171","url":null,"abstract":"<p>Photoactivatable carbon monoxide-releasing molecules (CORMs), typically based on transition-metal carbonyl complexes, have reliance on activation by UV or visible light that restricts their biomedical applications. To address this limitation, a near-infrared (NIR)-responsive nanoplatform is presented based on upconversion nanoparticles (UCNPs) loading with manganese carbonyl complex Mn<sub>2</sub>(CO)<sub>10</sub> that concurrently releases CO and manganese ion (Mn<sup>2+</sup>). With the UCNPs, the more tissue-penetrable NIR is used to locally generate UV light for photodecomposition of Mn<sub>2</sub>(CO)<sub>10</sub> into CO and manganese oxide (MnO<sub><i>X</i></sub>), after which MnO<sub><i>X</i></sub> is reduced to Mn<sup>2+</sup> by the overexpressed glutathione in cancer cells. Moreover, the released Mn<sup>2+</sup> can serve as a magnetic resonance imaging contrast agent to monitor the NIR-controlled corelease of CO and Mn<sup>2+</sup> in real time. Therefore, this nanoplatform can provide a potential strategy for NIR-enabled spatiotemporally release of CO and Mn<sup>2+</sup>, enhancing the controlled delivery and biomedical application of CORMs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300171","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140718060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liposomal Neostigmine Bromide: A Localized Therapeutic Approach for Detrusor Underactivity 溴化新斯的明脂质体: 逼尿肌活动不足的局部治疗方法
IF 4
Advanced Nanobiomed Research Pub Date : 2024-04-03 DOI: 10.1002/anbr.202300109
Kunpeng Liu, Haitao Gong, Binbin Jiao, Zhenshan Ding, Jian Ren, Zhihua Gan, Qingsong Yu
{"title":"Liposomal Neostigmine Bromide: A Localized Therapeutic Approach for Detrusor Underactivity","authors":"Kunpeng Liu,&nbsp;Haitao Gong,&nbsp;Binbin Jiao,&nbsp;Zhenshan Ding,&nbsp;Jian Ren,&nbsp;Zhihua Gan,&nbsp;Qingsong Yu","doi":"10.1002/anbr.202300109","DOIUrl":"10.1002/anbr.202300109","url":null,"abstract":"<p>This study aims to evaluate the therapeutic potential of cationic liposomal neostigmine bromide (NB), a novel drug delivery system, for the treatment of detrusor underactivity. By comparing the characteristics of NB-liposomes (NLP), NB-β-cyclodextrin inclusion complex liposomes (NCLP), and NB-mesoporous silica nanoparticle@CaCO<sub>3</sub> liposomes (NMCLP), NMCLP is selected as the main research subject. It has an average particle size and zeta potential of 100 nm and +50 mV, and its encapsulation efficiency and loading capacity of NB are 14.75% and 12.8%, respectively. Most importantly, NMCLP shows the best in vitro release performance among the three liposomes, demonstrating its ability in sustained release of NB. During cell and animal assays, efficient cellular uptake of liposomes through liposome-specific pathways is observed, facilitating targeted drug delivery, and in vivo experiments demonstrate the efficacy of NMCLP in improving bladder function in mice. Urodynamic measurements show increased bladder capacity and reduced voiding pressure, indicating enhanced bladder muscle activity. Histological analysis reveals the distribution and deep penetration of NMCLP within bladder tissues, supporting its localized drug effect. Therefore, NMCLP holds promise as a targeted and effective therapeutic strategy for detrusor underactivity.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of Inflammation and Regeneration in the Intervertebral Disc Using Enhanced Cell-Penetrating Peptides for MicroRNA Delivery 利用增强型细胞穿透肽递送 MicroRNA 调节椎间盘炎症和再生
IF 4
Advanced Nanobiomed Research Pub Date : 2024-04-01 DOI: 10.1002/anbr.202300112
Marcos N. Barcellona, Tara Ní Néill, Fergal J. O’Brien, James E. Dixon, Caroline M. Curtin, Conor T. Buckley
{"title":"Modulation of Inflammation and Regeneration in the Intervertebral Disc Using Enhanced Cell-Penetrating Peptides for MicroRNA Delivery","authors":"Marcos N. Barcellona,&nbsp;Tara Ní Néill,&nbsp;Fergal J. O’Brien,&nbsp;James E. Dixon,&nbsp;Caroline M. Curtin,&nbsp;Conor T. Buckley","doi":"10.1002/anbr.202300112","DOIUrl":"https://doi.org/10.1002/anbr.202300112","url":null,"abstract":"<p>Back pain is a global epidemiological and socioeconomic problem affecting up to 80% of people at some stage during their life and is often due to degeneration of the intervertebral disc (IVD). Therapies aimed at restoring the intradiscal space have predominantly focused on delivery of biomaterials, cells, or growth factors, among others, with variable degrees of success. While viral gene delivery strategies have emerged as promising therapeutic options in recent years, these approaches often have off-target effects and are associated with immunogenicity risks and other comorbidities. Consequently, nonviral methods have gained traction as potential avenues for gene delivery. Herein, enhanced cell-penetrating peptide (CPP) systems are used to deliver microRNAs in an in vitro and ex vivo model of disc degeneration. The data suggest that nanoparticle complexation of CPPs with (miR-221-inhibitor + miR-149-mimic) promotes protective effects in nucleus pulposus cells challenged with inflammatory cytokines TNF-α and IL-1β. Specifically, increases in matrix deposition, significant decreases in the secretion of an array of inflammatory cytokines, and decreased expression of matrix degradation enzymes MMP13 and ADAMTS5 are observed. These miR-CPP nanocomplexes can be further employed for targeting of the pericellular matrix space through homing, thus providing a promising approach for therapies of the intradiscal space.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen-Releasing Hydrogels for Tissue Regeneration 用于组织再生的释氧水凝胶
IF 3.4
Advanced Nanobiomed Research Pub Date : 2024-03-31 DOI: 10.1002/anbr.202300133
Shengxi Jiang, Yujia Zheng, Hao Xia, Zexin Liu, Shuquan Rao, Yingbo Wang, Hongyu Sun, Xiong Lu, Chaoming Xie
{"title":"Oxygen-Releasing Hydrogels for Tissue Regeneration","authors":"Shengxi Jiang,&nbsp;Yujia Zheng,&nbsp;Hao Xia,&nbsp;Zexin Liu,&nbsp;Shuquan Rao,&nbsp;Yingbo Wang,&nbsp;Hongyu Sun,&nbsp;Xiong Lu,&nbsp;Chaoming Xie","doi":"10.1002/anbr.202300133","DOIUrl":"https://doi.org/10.1002/anbr.202300133","url":null,"abstract":"<p>Hydrogels have emerged as a focal point of research in the biomedical field due to their applications in tissue repair. However, the majority of hydrogels lack the capability to release oxygen, constraining their therapeutic outcomes in environments with hypoxic tissues. In recent years, oxygen-releasing hydrogels have garnered extensive attention in the field of tissue engineering, owing to their ability to modulate oxygen release and meet the diverse oxygenation requirements of various tissues. These hydrogels can enhance repair efficiency and promote tissue regeneration in hypoxic tissue environments. The design of oxygen-releasing hydrogels primarily involves the utilization of diverse oxygen sources, such as algae, perfluorocarbons, and peroxides, to achieve optimal tissue oxygenation. This review provides a comprehensive summary of the design and fabrication strategies of oxygen-releasing hydrogels, discusses deeply into their underlying oxygen-releasing mechanisms, and their myriad applications in tissue repair along with the prospective challenges.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信