Induction of Cell Death by Combined Treatment with Photosensitizer-Chitosan Nanoparticles and the Ferroptosis Inducer RSL3 in Breast Cancer Cell Lines

IF 4 Q2 ENGINEERING, BIOMEDICAL
Marek Feith, Saikat Das Sajib, Anne Grethe Myrann, Anders Høgset, Pablo Garrido, Alfredo Martinez, Erik Knutsen, Kirsten Sandvig, Tore Skotland, Gunhild Mari Mælandsmo, Tore-Geir Iversen
{"title":"Induction of Cell Death by Combined Treatment with Photosensitizer-Chitosan Nanoparticles and the Ferroptosis Inducer RSL3 in Breast Cancer Cell Lines","authors":"Marek Feith,&nbsp;Saikat Das Sajib,&nbsp;Anne Grethe Myrann,&nbsp;Anders Høgset,&nbsp;Pablo Garrido,&nbsp;Alfredo Martinez,&nbsp;Erik Knutsen,&nbsp;Kirsten Sandvig,&nbsp;Tore Skotland,&nbsp;Gunhild Mari Mælandsmo,&nbsp;Tore-Geir Iversen","doi":"10.1002/anbr.202400208","DOIUrl":null,"url":null,"abstract":"<p>\nBreast cancer, a prevalent malignancy worldwide, includes the triple-negative subtype (TNBC) characterized by poor treatment outcomes. TNBC has been shown to be sensitive to ferroptotic cell death, an iron-dependent cell death mechanism involving reactive oxygen species (ROS) and lipid peroxidation. Herein, biodegradable tetraphenylchlorin-conjugated chitosan nanoparticles (TPC-CS NPs) in combination with the free ferroptosis inducer RSL3 is used in MCF7 (hormone receptor-positive, epithelial) and MDA-MB-231 (hormone receptor-negative, mesenchymal-like) breast cancer cell lines. The results show that RSL3 treatment has no cytotoxic effect in MCF7 and there is no enhanced sensitivity when combined with TPC-CS NPs, while the combination sensitizes MDA-MB-231 cells. Western blot analysis reveals that the combined treatment decreases and differently affects GPX4 levels and the ratio between the two GPX isoforms in the two cell lines. In MDA-MB-231 cells, the combined treatment shows enhanced effects on lipid peroxidation, mitochondrial potential, and basal and maximal respiration, as compared to single treatments. Finally, ferroptosis expression signatures distinguish breast cancer cell lines with an increasing score in mesenchymal-like cells. Moreover, the signatures correlate with breast cancer subtypes, exhibiting the highest scores in subtypes rich in mesenchymal-like cells, particularly basal-like and claudin-low tumors, suggesting their susceptibility to ferroptosis induction.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400208","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer, a prevalent malignancy worldwide, includes the triple-negative subtype (TNBC) characterized by poor treatment outcomes. TNBC has been shown to be sensitive to ferroptotic cell death, an iron-dependent cell death mechanism involving reactive oxygen species (ROS) and lipid peroxidation. Herein, biodegradable tetraphenylchlorin-conjugated chitosan nanoparticles (TPC-CS NPs) in combination with the free ferroptosis inducer RSL3 is used in MCF7 (hormone receptor-positive, epithelial) and MDA-MB-231 (hormone receptor-negative, mesenchymal-like) breast cancer cell lines. The results show that RSL3 treatment has no cytotoxic effect in MCF7 and there is no enhanced sensitivity when combined with TPC-CS NPs, while the combination sensitizes MDA-MB-231 cells. Western blot analysis reveals that the combined treatment decreases and differently affects GPX4 levels and the ratio between the two GPX isoforms in the two cell lines. In MDA-MB-231 cells, the combined treatment shows enhanced effects on lipid peroxidation, mitochondrial potential, and basal and maximal respiration, as compared to single treatments. Finally, ferroptosis expression signatures distinguish breast cancer cell lines with an increasing score in mesenchymal-like cells. Moreover, the signatures correlate with breast cancer subtypes, exhibiting the highest scores in subtypes rich in mesenchymal-like cells, particularly basal-like and claudin-low tumors, suggesting their susceptibility to ferroptosis induction.

Abstract Image

光敏剂-壳聚糖纳米颗粒与铁下垂诱导剂RSL3联合作用诱导乳腺癌细胞死亡
乳腺癌是一种世界范围内普遍存在的恶性肿瘤,包括三阴性亚型(TNBC),其特点是治疗效果差。TNBC已被证明对铁致细胞死亡敏感,铁致细胞死亡是一种涉及活性氧(ROS)和脂质过氧化的铁依赖性细胞死亡机制。本研究将可生物降解的四苯基氯偶联壳聚糖纳米颗粒(TPC-CS NPs)与游离铁凋亡诱导剂RSL3联合应用于MCF7(激素受体阳性,上皮细胞)和MDA-MB-231(激素受体阴性,间质样)乳腺癌细胞系。结果显示,RSL3治疗对MCF7无细胞毒作用,与TPC-CS NPs联合使用时,其敏感性没有增强,而与TPC-CS NPs联合使用时,对MDA-MB-231细胞增敏。Western blot分析显示,联合处理降低了两种细胞系GPX4水平,并对两种GPX亚型的比值有不同程度的影响。在MDA-MB-231细胞中,与单一处理相比,联合处理对脂质过氧化、线粒体电位、基础呼吸和最大呼吸的影响增强。最后,铁下垂表达特征区分乳腺癌细胞系,在间充质样细胞中评分增加。此外,这些特征与乳腺癌亚型相关,在富含间充质样细胞的亚型中表现出最高的分数,特别是基底样和低cludin肿瘤,表明它们对铁下垂诱导的易感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信