Amir Jafari, Erfan Behjat, Haniyeh Malektaj, Faezeh Mobini
{"title":"Alignment behavior of nerve, vascular, muscle, and intestine cells in two- and three-dimensional strategies.","authors":"Amir Jafari, Erfan Behjat, Haniyeh Malektaj, Faezeh Mobini","doi":"10.1002/wsbm.1620","DOIUrl":"10.1002/wsbm.1620","url":null,"abstract":"<p><p>By harnessing structural hierarchical insights, plausibly simulate better ones imagination to figure out the best choice of methods for reaching out the unprecedented developments of the tissue engineering products as a next level. Constructing a functional tissue that incorporates two-dimensional (2D) or higher dimensions requires overcoming technological or biological limitations in order to orchestrate the structural compilation of one-dimensional and 2D sheets (microstructures) simultaneously (in situ). This approach enables the creation of a layered structure that can be referred to as an ensemble of layers or, after several days of maturation, a direct or indirect joining of layers. Here, we have avoided providing a detailed methodological description of three-dimensional and 2D strategies, except for a few interesting examples that highlight the higher alignment of cells and emphasize rarely remembered facts associated with vascular, peripheral nerve, muscle, and intestine tissues. The effective directionality of cells in conjunction with geometric cues (in the range of micrometers) is well known to affect a variety of cell behaviors. The curvature of a cell's environment is one of the factors that influence the formation of patterns within tissues. The text will cover cell types containing some level of stemness, which will be followed by their consequences for tissue formation. Other important considerations pertain to cytoskeleton traction forces, cell organelle positioning, and cell migration. An overview of cell alignment along with several pivotal molecular and cellular level concepts, such as mechanotransduction, chirality, and curvature of structure effects on cell alignments will be presented. The mechanotransduction term will be used here in the context of the sensing capability that cells show as a result of force-induced changes either at the conformational or the organizational levels, a capability that allows us to modify cell fate by triggering downstream signaling pathways. A discussion of the cells' cytoskeleton and of the stress fibers involvement in altering the cell's circumferential constitution behavior (alignment) based on exposed scaffold radius will be provided. Curvatures with size similarities in the range of cell sizes cause the cell's behavior to act as if it was in an in vivo tissue environment. The revision of the literature, patents, and clinical trials performed for the present study shows that there is a clear need for translational research through the implementation of clinical trial platforms that address the tissue engineering possibilities raised in the current revision. This article is categorized under: Infectious Diseases > Biomedical Engineering Neurological Diseases > Biomedical Engineering Cardiovascular Diseases > Biomedical Engineering.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10593857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder.","authors":"Tuhina Prasad, Sharada Iyer, Sayoni Chatterjee, Megha Kumar","doi":"10.1002/wsbm.1603","DOIUrl":"https://doi.org/10.1002/wsbm.1603","url":null,"abstract":"<p><p>The genesis and functioning of the central nervous system are one of the most intricate and intriguing aspects of embryogenesis. The big lacuna in the field of human CNS development is the lack of accessibility of the human brain for direct observation during embryonic and fetal development. Thus, it is imperative to establish alternative animal models to gain deep mechanistic insights into neurodevelopment, establishment of neural circuitry, and its function. Neurodevelopmental events such as neural specification, differentiation, and generation of neuronal and non-neuronal cell types have been comprehensively studied using a variety of animal models and in vitro model systems derived from human cells. The experimentations on animal models have revealed novel, mechanistic insights into neurogenesis, formation of neural networks, and function. The models, thus serve as indispensable tools to understand the molecular basis of neurodevelopmental disorders (NDDs) arising from aberrations during embryonic development. Here, we review the spectrum of in vivo models such as fruitfly, zebrafish, frog, mice, and nonhuman primates to study neurogenesis and NDDs like microcephaly and Autism Spectrum Disorder. We also discuss nonconventional models such as ascidians and the recent technological advances in the field to study neurogenesis, disease mechanisms, and pathophysiology of human NDDs. This article is categorized under: Cancer > Stem Cells and Development Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10145877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Network modeling helps to tackle the complexity of drug-disease systems.","authors":"Maurizio Recanatini, Luca Menestrina","doi":"10.1002/wsbm.1607","DOIUrl":"https://doi.org/10.1002/wsbm.1607","url":null,"abstract":"<p><p>From the (patho)physiological point of view, diseases can be considered as emergent properties of living systems stemming from the complexity of these systems. Complex systems display some typical features, including the presence of emergent behavior and the organization in successive hierarchic levels. Drug treatments increase this complexity scenario, and from some years the use of network models has been introduced to describe drug-disease systems and to make predictions about them with regard to several aspects related to drug discovery. Here, we review some recent examples thereof with the aim to illustrate how network science tools can be very effective in addressing both tasks. We will examine the use of bipartite networks that lead to the important concept of \"disease module\", as well as the introduction of more articulated models, like multi-scale and multiplex networks, able to describe disease systems at increasing levels of organization. Examples of predictive models will then be discussed, considering both those that exploit approaches purely based on graph theory and those that integrate machine learning methods. A short account of both kinds of methodological applications will be provided. Finally, the point will be made on the present situation of modeling complex drug-disease systems highlighting some open issues. This article is categorized under: Neurological Diseases > Computational Models Infectious Diseases > Computational Models Cardiovascular Diseases > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9789876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How cells sense and integrate information from different sources.","authors":"Maria F Ullo, Lindsay B Case","doi":"10.1002/wsbm.1604","DOIUrl":"https://doi.org/10.1002/wsbm.1604","url":null,"abstract":"<p><p>Cell signaling is a fundamental cellular process that enables cells to sense and respond to information in their surroundings. At the molecular level, signaling is primarily carried out by transmembrane protein receptors that can initiate complex downstream signal transduction cascades to alter cellular behavior. In the human body, different cells can be exposed to a wide variety of environmental conditions, and cells express diverse classes of receptors capable of sensing and integrating different signals. Furthermore, different receptors and signaling pathways can crosstalk with each other to calibrate the cellular response. Crosstalk occurs through multiple mechanisms at different levels of signaling pathways. In this review, we discuss how cells sense and integrate different chemical, mechanical, and spatial signals as well as the mechanisms of crosstalk between pathways. To illustrate these concepts, we use a few well-studied signaling pathways, including receptor tyrosine kinases and integrin receptors. Finally, we discuss the implications of dysregulated cellular sensing on driving diseases such as cancer. This article is categorized under: Cancer > Molecular and Cellular Physiology Metabolic Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10145897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The evolution of cannabinoid receptors in cancer.","authors":"Nakea M Pennant, Cimona V Hinton","doi":"10.1002/wsbm.1602","DOIUrl":"10.1002/wsbm.1602","url":null,"abstract":"Cannabis sativa (cannabis) has been used as a therapeutic treatment for centuries treating various diseases and disorders. However, racial propaganda led to the criminalization of cannabis in the 1930s preventing opportunities to explore marijuana in therapeutic development. The increase in recreational use of cannabis further grew concern about abuse, and lead to further restrictions and distribution of cannabis in the 1970s when it was declared to be a Schedule I drug in the USA. In the late 1990s in some states, legislation assisted in legalizing the use of cannabis for medical purposes under physician supervision. As it has been proven that cannabinoids and their receptors play an essential role in the regulation of the physiological and biological processes in our bodies. The endocannabinoid system (ECS) is the complex that regulates the cell-signaling system consisting of endogenous cannabinoids (endocannabinoids), cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The ECS along with phytocannabinoids and synthetic cannabinoids serves to be a beneficial therapeutic target in treating diseases as they play roles in cell homeostasis, cell motility, inflammation, pain-sensation, mood, and memory. Cannabinoids have been shown to inhibit proliferation, metastasis, and angiogenesis and even restore homeostasis in a variety of models of cancer in vitro and in vivo. Cannabis and its receptors have evolved into a therapeutic treatment for cancers. This article is categorized under: Cancer > Molecular and Cellular Physiology.","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484301/pdf/nihms-1921226.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10271030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robyn W May, Gonzalo D Maso Talou, Alys R Clark, Jonathan P Mynard, Joseph J Smolich, Pablo J Blanco, Lucas O Müller, Thomas L Gentles, Frank H Bloomfield, Soroush Safaei
{"title":"From fetus to neonate: A review of cardiovascular modeling in early life.","authors":"Robyn W May, Gonzalo D Maso Talou, Alys R Clark, Jonathan P Mynard, Joseph J Smolich, Pablo J Blanco, Lucas O Müller, Thomas L Gentles, Frank H Bloomfield, Soroush Safaei","doi":"10.1002/wsbm.1608","DOIUrl":"https://doi.org/10.1002/wsbm.1608","url":null,"abstract":"<p><p>Computational modeling has well-established utility in the study of cardiovascular hemodynamics, with applications in medical research and, increasingly, in clinical settings to improve the diagnosis and treatment of cardiovascular diseases. Most cardiovascular models developed to date have been of the adult circulatory system; however, the perinatal period is unique as cardiovascular physiology undergoes drastic changes from the fetal circulation, during the birth transition, and into neonatal life. There may also be further complications in this period: for example, preterm birth (defined as birth before <math><mrow><mn>37</mn></mrow> </math> completed weeks of gestation) carries risks of short-term cardiovascular instability and is associated with increased lifetime cardiovascular risk. Here, we review computational models of the cardiovascular system in early life, their applications to date and potential improvements and enhancements of these models. We propose a roadmap for developing an open-source cardiovascular model that spans the fetal, perinatal, and postnatal periods. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Congenital Diseases > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9789625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clifford Pereira, Sabrina Valentina Lazar, Aijun Wang
{"title":"Bioengineering approaches for nerve graft revascularization: Current concepts and future directions.","authors":"Clifford Pereira, Sabrina Valentina Lazar, Aijun Wang","doi":"10.1002/wsbm.1609","DOIUrl":"https://doi.org/10.1002/wsbm.1609","url":null,"abstract":"<p><p>Peripheral nerve injury (PNI) is the most common neurological injury in civilian and military injuries, with over 360,000 PNI procedures performed in the US yearly. Segmental loss of nerve tissue results in a nerve gap precluding a tension-free primary repair, and in these cases, interpositional autologous or acellular nerve allografts are used to bridge the gap. Graft ischemia time is a critical factor in achieving satisfactory nerve regeneration. Rapid nerve graft revascularization is essential in order to sustain Schwann cell growth which in turn is crucial for axonal regeneration. Currently, nerve autografts are considered the gold standard for segmental nerve gaps but are associated with several disadvantages such as limited supply of expendable donor tissue, increased operative time, and donor site morbidity. Hence, readily available, off-the-shelf nerve allografts or scaffolds are being investigated since they provide advantages such as a virtually limitless sourcing, a wide variety of sizes to match recipient nerves, and no donor site morbidity. New, exciting advances in tissue engineering to augment revascularization of nerve allografts or conduits have been investigated. Strategies include pro-angiogenic mesenchymal stem cells, extracellular vesicles, functionalized scaffolds, bioactive peptides, and three-dimensional bioprinting. This article discusses these bioengineering advances and future strategies aimed at enhancing nerve graft and scaffold revascularization. This article is categorized under: Neurological Diseases > Biomedical Engineering Neurological Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9794481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Woods, Jason A McAlister, Jennifer Geddes-McAlister
{"title":"A One Health approach to overcoming fungal disease and antifungal resistance.","authors":"Michael Woods, Jason A McAlister, Jennifer Geddes-McAlister","doi":"10.1002/wsbm.1610","DOIUrl":"https://doi.org/10.1002/wsbm.1610","url":null,"abstract":"<p><p>The global burden of fungal disease poses a substantial threat to human, animal, and environmental health, endangering both human and livestock populations and creating vulnerabilities to food supplies world-wide. Antifungal drugs provide essential therapies to humans and animals against infections, while fungicides provide protection in agriculture. However, a limited arsenal of antifungal agents results in cross-use between agriculture and health, promoting the development of resistance, and drastically reducing our defenses against disease. Critically, antifungal resistant strains found ubiquitously within the natural environment demonstrate resistance to the same classes of antifungals used to treat human and animal infections, hindering effective treatment within the clinic. This interconnectivity supports the need for a One Health approach to combat fungal diseases and overcome antifungal resistance, ensuring that treatment and protection of a defined group does not inadvertently endanger or sacrifice other plants, animals, or humans. In this review, we present sources of antifungal resistance and discuss the integration of environmental and clinical resources to manage disease. Moreover, we explore opportunities for drug synergy and repurposing strategies, highlight fungal targets being investigated to overcome resistance, and propose technologies for the discovery of novel fungal targets. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9847780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The use of multiplex imaging techniques to characterize tuberculous granuloma heterogeneity.","authors":"Ruiyao Xu, Wei Xiao, Guanggui Ding, Jiang Zeng, Hui Liu, Yi Cai, Xinchun Chen","doi":"10.1002/wsbm.1601","DOIUrl":"https://doi.org/10.1002/wsbm.1601","url":null,"abstract":"<p><p>Caseous granulomas are pathological hallmarks of tuberculosis (TB), and increasing evidence suggests that TB granuloma composition is highly temporally and spatially heterogenous in both animal models and humans. Traditional pathological techniques are limited in their ability to reveal the heterogeneity present in TB granulomas. Multiplex tissue imaging tools combined with powerful, high resolution spatial analysis have enabled the detection of various cell phenotypes, aiding in the visualization of the granuloma complex and revealing the interactions between immune cells and nonimmune cells. This updated understanding of tuberculous granuloma heterogeneity offers vital insights for researchers aiming to uncover the immunoregulatory mechanisms underlying granuloma formation during TB pathogenesis. More detailed granuloma classification systems will also be of use for precision medicine, and for identifying biological targets for host-directed therapeutics in TB patients. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Biomedical Engineering Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyclooxygenase-2 as a therapeutic target against human breast cancer: A comprehensive review.","authors":"Ankita Sahu, Khalid Raza, Dibyabhaba Pradhan, Arun Kumar Jain, Saurabh Verma","doi":"10.1002/wsbm.1596","DOIUrl":"https://doi.org/10.1002/wsbm.1596","url":null,"abstract":"<p><p>Cyclooxygenase-2 (COX-2) is a key aspect of the physiology and pathogenesis of various cancer types. Overexpression of this enzyme is responsible for the elevated prostaglandin production and characteristic feature of breast cancer. Inhibition of COX-2 derived prostanoids facilitates anti-inflammatory, analgesic, and antipyretic effects of non-steroid anti-inflammation drugs. The overexpression of COX-2 is associated with inflammation, pain, and fever. The present study provides the updated relevant literature describing the role of well-characterized isoforms of cyclooxygenase with particular emphasis on COX-2, mechanism of action, the effect of the drug, combinatorial drugs, and microarray-based differential expression analysis and network analysis. We have discussed the currently used combinatorial treatments and their challenges in breast cancer. This article is categorized under: Cancer > Computational Models Cancer > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10056622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}