Michael Woods, Jason A McAlister, Jennifer Geddes-McAlister
{"title":"一个健康方法克服真菌疾病和抗真菌耐药性。","authors":"Michael Woods, Jason A McAlister, Jennifer Geddes-McAlister","doi":"10.1002/wsbm.1610","DOIUrl":null,"url":null,"abstract":"<p><p>The global burden of fungal disease poses a substantial threat to human, animal, and environmental health, endangering both human and livestock populations and creating vulnerabilities to food supplies world-wide. Antifungal drugs provide essential therapies to humans and animals against infections, while fungicides provide protection in agriculture. However, a limited arsenal of antifungal agents results in cross-use between agriculture and health, promoting the development of resistance, and drastically reducing our defenses against disease. Critically, antifungal resistant strains found ubiquitously within the natural environment demonstrate resistance to the same classes of antifungals used to treat human and animal infections, hindering effective treatment within the clinic. This interconnectivity supports the need for a One Health approach to combat fungal diseases and overcome antifungal resistance, ensuring that treatment and protection of a defined group does not inadvertently endanger or sacrifice other plants, animals, or humans. In this review, we present sources of antifungal resistance and discuss the integration of environmental and clinical resources to manage disease. Moreover, we explore opportunities for drug synergy and repurposing strategies, highlight fungal targets being investigated to overcome resistance, and propose technologies for the discovery of novel fungal targets. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A One Health approach to overcoming fungal disease and antifungal resistance.\",\"authors\":\"Michael Woods, Jason A McAlister, Jennifer Geddes-McAlister\",\"doi\":\"10.1002/wsbm.1610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global burden of fungal disease poses a substantial threat to human, animal, and environmental health, endangering both human and livestock populations and creating vulnerabilities to food supplies world-wide. Antifungal drugs provide essential therapies to humans and animals against infections, while fungicides provide protection in agriculture. However, a limited arsenal of antifungal agents results in cross-use between agriculture and health, promoting the development of resistance, and drastically reducing our defenses against disease. Critically, antifungal resistant strains found ubiquitously within the natural environment demonstrate resistance to the same classes of antifungals used to treat human and animal infections, hindering effective treatment within the clinic. This interconnectivity supports the need for a One Health approach to combat fungal diseases and overcome antifungal resistance, ensuring that treatment and protection of a defined group does not inadvertently endanger or sacrifice other plants, animals, or humans. In this review, we present sources of antifungal resistance and discuss the integration of environmental and clinical resources to manage disease. Moreover, we explore opportunities for drug synergy and repurposing strategies, highlight fungal targets being investigated to overcome resistance, and propose technologies for the discovery of novel fungal targets. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>\",\"PeriodicalId\":29896,\"journal\":{\"name\":\"WIREs Mechanisms of Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Mechanisms of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1610\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1610","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
A One Health approach to overcoming fungal disease and antifungal resistance.
The global burden of fungal disease poses a substantial threat to human, animal, and environmental health, endangering both human and livestock populations and creating vulnerabilities to food supplies world-wide. Antifungal drugs provide essential therapies to humans and animals against infections, while fungicides provide protection in agriculture. However, a limited arsenal of antifungal agents results in cross-use between agriculture and health, promoting the development of resistance, and drastically reducing our defenses against disease. Critically, antifungal resistant strains found ubiquitously within the natural environment demonstrate resistance to the same classes of antifungals used to treat human and animal infections, hindering effective treatment within the clinic. This interconnectivity supports the need for a One Health approach to combat fungal diseases and overcome antifungal resistance, ensuring that treatment and protection of a defined group does not inadvertently endanger or sacrifice other plants, animals, or humans. In this review, we present sources of antifungal resistance and discuss the integration of environmental and clinical resources to manage disease. Moreover, we explore opportunities for drug synergy and repurposing strategies, highlight fungal targets being investigated to overcome resistance, and propose technologies for the discovery of novel fungal targets. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.