WIREs Mechanisms of Disease最新文献

筛选
英文 中文
SLC40A1 in iron metabolism, ferroptosis, and disease: A review. 铁代谢、铁变态反应和疾病中的 SLC40A1:综述。
IF 4.6 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-07-01 Epub Date: 2024-03-20 DOI: 10.1002/wsbm.1644
Yan Zhang, Liyi Zou, Xiaodan Li, Long Guo, Baoguang Hu, Hua Ye, Yi Liu
{"title":"SLC40A1 in iron metabolism, ferroptosis, and disease: A review.","authors":"Yan Zhang, Liyi Zou, Xiaodan Li, Long Guo, Baoguang Hu, Hua Ye, Yi Liu","doi":"10.1002/wsbm.1644","DOIUrl":"10.1002/wsbm.1644","url":null,"abstract":"<p><p>Solute carrier family 40 member 1 (SLC40A1) plays an essential role in transporting iron from intracellular to extracellular environments. When SLC40A1 expression is abnormal, cellular iron metabolism becomes dysregulated, resulting in an overload of intracellular iron, which induces cell ferroptosis. Numerous studies have confirmed that ferroptosis is closely associated with the development of many diseases. Here, we review recent findings on SLC40A1 in ferroptosis and its association with various diseases, intending to explore new directions for research on disease pathogenesis and new therapeutic targets for prevention and treatment. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Metabolic Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in understanding immune homeostasis in latent tuberculosis infection. 在了解潜伏结核感染的免疫稳态方面取得的进展。
IF 4.6 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-07-01 Epub Date: 2024-02-13 DOI: 10.1002/wsbm.1643
Liangfei Niu, Hao Wang, Geyang Luo, Jing Zhou, Zhidong Hu, Bo Yan
{"title":"Advances in understanding immune homeostasis in latent tuberculosis infection.","authors":"Liangfei Niu, Hao Wang, Geyang Luo, Jing Zhou, Zhidong Hu, Bo Yan","doi":"10.1002/wsbm.1643","DOIUrl":"10.1002/wsbm.1643","url":null,"abstract":"<p><p>Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The intersection of virus infection and liver disease: A comprehensive review of pathogenesis, diagnosis, and treatment. 病毒感染与肝病的交集:全面回顾发病机制、诊断和治疗。
IF 4.6 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-05-01 Epub Date: 2024-01-22 DOI: 10.1002/wsbm.1640
Meng Ren, Chenxia Lu, Mingwei Zhou, Xiaobing Jiang, Xiaodong Li, Ningning Liu
{"title":"The intersection of virus infection and liver disease: A comprehensive review of pathogenesis, diagnosis, and treatment.","authors":"Meng Ren, Chenxia Lu, Mingwei Zhou, Xiaobing Jiang, Xiaodong Li, Ningning Liu","doi":"10.1002/wsbm.1640","DOIUrl":"10.1002/wsbm.1640","url":null,"abstract":"<p><p>Liver disease represents a significant global burden, placing individuals at a heightened risk of developing cirrhosis and liver cancer. Viral infections act as a primary cause of liver diseases on a worldwide scale. Infections involving hepatitis viruses, notably hepatitis B, C, and E viruses, stand out as the most prevalent contributors to acute and chronic intrahepatic adverse outcome, although the hepatitis C virus (HCV) can be effectively cured with antiviral drugs, but no preventative vaccination developed. Hepatitis B virus (HBV) and HCV can lead to both acute and chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma (HCC), which are principal causes of worldwide morbidity and mortality. Other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are capable of causing liver damage. Therefore, it is essential to recognize that virus infections and liver diseases are intricate and interconnected processes. A profound understanding of the underlying relationship between virus infections and liver diseases proves pivotal in the effective prevention, diagnosis, and treatment of these conditions. In this review, we delve into the mechanisms by which virus infections induce liver diseases, as well as explore the pathogenesis, diagnosis, and treatment of liver diseases. This article is categorized under: Infectious Diseases > Biomedical Engineering.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of cardiac-coronary interaction and insights from mathematical modeling. 回顾心脏与冠状动脉的相互作用以及数学建模的启示。
IF 4.6 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-05-01 Epub Date: 2024-02-05 DOI: 10.1002/wsbm.1642
Lei Fan, Haifeng Wang, Ghassan S Kassab, Lik Chuan Lee
{"title":"Review of cardiac-coronary interaction and insights from mathematical modeling.","authors":"Lei Fan, Haifeng Wang, Ghassan S Kassab, Lik Chuan Lee","doi":"10.1002/wsbm.1642","DOIUrl":"10.1002/wsbm.1642","url":null,"abstract":"<p><p>Cardiac-coronary interaction is fundamental to the function of the heart. As one of the highest metabolic organs in the body, the cardiac oxygen demand is met by blood perfusion through the coronary vasculature. The coronary vasculature is largely embedded within the myocardial tissue which is continually contracting and hence squeezing the blood vessels. The myocardium-coronary vessel interaction is two-ways and complex. Here, we review the different types of cardiac-coronary interactions with a focus on insights gained from mathematical models. Specifically, we will consider the following: (1) myocardial-vessel mechanical interaction; (2) metabolic-flow interaction and regulation; (3) perfusion-contraction matching, and (4) chronic interactions between the myocardium and coronary vasculature. We also provide a discussion of the relevant experimental and clinical studies of different types of cardiac-coronary interactions. Finally, we highlight knowledge gaps, key challenges, and limitations of existing mathematical models along with future research directions to understand the unique myocardium-coronary coupling in the heart. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. 酵母菌与人类的共同进化:真菌从旅客、殖民者到入侵者的转变。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-05-01 Epub Date: 2023-12-26 DOI: 10.1002/wsbm.1639
Stefano Nenciarini, Sonia Renzi, Monica di Paola, Niccolò Meriggi, Duccio Cavalieri
{"title":"The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders.","authors":"Stefano Nenciarini, Sonia Renzi, Monica di Paola, Niccolò Meriggi, Duccio Cavalieri","doi":"10.1002/wsbm.1639","DOIUrl":"10.1002/wsbm.1639","url":null,"abstract":"<p><p>Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ascomycetes yeasts: The hidden part of human microbiome. 子囊菌酵母:人类微生物组的隐藏部分
IF 4.6 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-05-01 Epub Date: 2024-01-16 DOI: 10.1002/wsbm.1641
Stefano Nenciarini, Sonia Renzi, Monica di Paola, Niccolò Meriggi, Duccio Cavalieri
{"title":"Ascomycetes yeasts: The hidden part of human microbiome.","authors":"Stefano Nenciarini, Sonia Renzi, Monica di Paola, Niccolò Meriggi, Duccio Cavalieri","doi":"10.1002/wsbm.1641","DOIUrl":"10.1002/wsbm.1641","url":null,"abstract":"<p><p>The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. 非正则 NFκB 通路:健康与疾病的调控机制
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-04-18 DOI: 10.1002/wsbm.1646
Benancio N Rodriguez, Helen Huang, Jennifer J Chia, Alexander Hoffmann
{"title":"The noncanonical NFκB pathway: Regulatory mechanisms in health and disease.","authors":"Benancio N Rodriguez, Helen Huang, Jennifer J Chia, Alexander Hoffmann","doi":"10.1002/wsbm.1646","DOIUrl":"https://doi.org/10.1002/wsbm.1646","url":null,"abstract":"The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140689461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in CD8+ T cell responses during adaptive immunity. 适应性免疫过程中 CD8+ T 细胞反应的性别差异。
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-04-05 DOI: 10.1002/wsbm.1645
Paul Jerard Layug, Harman Vats, Kamali Kannan, J. Arsenio
{"title":"Sex differences in CD8+ T cell responses during adaptive immunity.","authors":"Paul Jerard Layug, Harman Vats, Kamali Kannan, J. Arsenio","doi":"10.1002/wsbm.1645","DOIUrl":"https://doi.org/10.1002/wsbm.1645","url":null,"abstract":"Biological sex is an important variable that influences the immune system's susceptibility to infectious and non-infectious diseases and their outcomes. Sex dimorphic features in innate and adaptive immune cells and their activities may help to explain sex differences in immune responses. T lymphocytes in the adaptive immune system are essential to providing protection against infectious and chronic inflammatory diseases. In this review, T cell responses are discussed with focus on the current knowledge of biological sex differences in CD8+ T cell mediated adaptive immune responses in infectious and chronic inflammatory diseases. Future directions aimed at investigating the molecular and cellular mechanisms underlying sex differences in diverse T cell responses will continue to underscore the significance of understanding sex differences in protective immunity at the cellular level, to induce appropriate T cell-based immune responses in infection, autoimmunity, and cancer. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology.","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140737496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. 让我们来谈谈性:双尾目动物神经性分化的机制
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-03-01 Epub Date: 2024-01-07 DOI: 10.1002/wsbm.1636
Emma C Roggenbuck, Elijah A Hall, Isabel B Hanson, Alyssa A Roby, Katherine K Zhang, Kyle A Alkatib, Joseph A Carter, Jarred E Clewner, Anna L Gelfius, Shiyuan Gong, Finley R Gordon, Jolene N Iseler, Samhita Kotapati, Marilyn Li, Areeba Maysun, Elise O McCormick, Geetanjali Rastogi, Srijani Sengupta, Chantal U Uzoma, Madison A Wolkov, E Josephine Clowney
{"title":"Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria.","authors":"Emma C Roggenbuck, Elijah A Hall, Isabel B Hanson, Alyssa A Roby, Katherine K Zhang, Kyle A Alkatib, Joseph A Carter, Jarred E Clewner, Anna L Gelfius, Shiyuan Gong, Finley R Gordon, Jolene N Iseler, Samhita Kotapati, Marilyn Li, Areeba Maysun, Elise O McCormick, Geetanjali Rastogi, Srijani Sengupta, Chantal U Uzoma, Madison A Wolkov, E Josephine Clowney","doi":"10.1002/wsbm.1636","DOIUrl":"10.1002/wsbm.1636","url":null,"abstract":"<p><p>In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth. 血管生成的计算模型:血管生长过程中细胞重排的重要性
IF 3.1 3区 医学
WIREs Mechanisms of Disease Pub Date : 2024-03-01 Epub Date: 2023-12-12 DOI: 10.1002/wsbm.1634
Daria Stepanova, Helen M Byrne, Philip K Maini, Tomás Alarcón
{"title":"Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth.","authors":"Daria Stepanova, Helen M Byrne, Philip K Maini, Tomás Alarcón","doi":"10.1002/wsbm.1634","DOIUrl":"10.1002/wsbm.1634","url":null,"abstract":"<p><p>Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the \"snail-trail\" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138810544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信