Farshad Moradi Kashkooli, Fatemeh Mirala, Masoud H H Tehrani, Mahvash Alirahimi, Mohammad Souri, Aryan Golzaryan, Saptarshi Kar, Madjid Soltani
{"title":"Mechanical Forces in Tumor Growth and Treatment: Perspectives From Biology, Physics, Engineering, and Mathematical Modeling.","authors":"Farshad Moradi Kashkooli, Fatemeh Mirala, Masoud H H Tehrani, Mahvash Alirahimi, Mohammad Souri, Aryan Golzaryan, Saptarshi Kar, Madjid Soltani","doi":"10.1002/wsbm.70000","DOIUrl":null,"url":null,"abstract":"<p><p>The progression of tumors is influenced by mechanical forces and biological elements, such as hypoxia and angiogenesis. Mechanical factors, including stress, pressure, interstitial fluid pressure, and cellular traction forces, compromise normal tissue architecture, augmenting stiffness and thus promoting tumor growth and invasion. The selective elimination of specific tumor components can reduce growth-induced mechanical stress, thereby improving therapeutic efficacy. Furthermore, stress-relief drugs have the potential in enhancing chemotherapy outcomes. In this setting, computational modeling functions as an essential tool for quantitatively elucidating the mechanical principles underlying tumor formation. These models can precisely replicate the impact of mechanical pressures on solid tumors, offering insight into the regulation of tumor behavior by these forces. Tumor growth produces mechanical forces, including compression, displacement, and deformation, leading to irregular stress patterns, expedited tumor advancement, and reduced treatment efficacy. This review analyzes the impact of mechanical forces on carcinogenesis and solid tumor proliferation, emphasizing the significance of stress alleviation in regulating tumor growth. Furthermore, we investigate the influence of mechanical forces on tumor dissemination and emphasize the promise of integrating computational modeling with force-targeted cancer therapies to improve treatment efficacy by tackling the fundamental mechanics of tumor proliferation.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"17 2","pages":"e70000"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.70000","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The progression of tumors is influenced by mechanical forces and biological elements, such as hypoxia and angiogenesis. Mechanical factors, including stress, pressure, interstitial fluid pressure, and cellular traction forces, compromise normal tissue architecture, augmenting stiffness and thus promoting tumor growth and invasion. The selective elimination of specific tumor components can reduce growth-induced mechanical stress, thereby improving therapeutic efficacy. Furthermore, stress-relief drugs have the potential in enhancing chemotherapy outcomes. In this setting, computational modeling functions as an essential tool for quantitatively elucidating the mechanical principles underlying tumor formation. These models can precisely replicate the impact of mechanical pressures on solid tumors, offering insight into the regulation of tumor behavior by these forces. Tumor growth produces mechanical forces, including compression, displacement, and deformation, leading to irregular stress patterns, expedited tumor advancement, and reduced treatment efficacy. This review analyzes the impact of mechanical forces on carcinogenesis and solid tumor proliferation, emphasizing the significance of stress alleviation in regulating tumor growth. Furthermore, we investigate the influence of mechanical forces on tumor dissemination and emphasize the promise of integrating computational modeling with force-targeted cancer therapies to improve treatment efficacy by tackling the fundamental mechanics of tumor proliferation.